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Preface

The 1950s are often referred to as the Renaissance of inorganic compounds,
yet the true significance of metal complexes was only fully realized in the
latter half of the 20th century. Research in metal complexes spans a broad
spectrum of topics, from syntheses and reactions to structures and physical
properties. The instrumental analysis of metal complexes is critical to the
field, and can often lead to the thrilling discovery of unexpected phenomena.
The breadth of measurement and analysis techniques that are now available
dictate that the coordination chemist should have wide-ranging knowledge
of areas such as quantum chemistry, thermodynamics, kinetics, equilibrium
theory, analytical chemistry, surface chemistry, and solid-state chemistry,
to name but a few. This book not only explains the methods but also the
principles of the measurements and the fundamental theory required to
ensure that data can be collected and interpreted correctly and the necessary
information can be extracted.

We could not measure physical properties in our labs or institutes a
half-century ago. First, we booked the instruments and waited for days or
weeks for the measurements. Some measurements themselves took several
days, but we did not feel it was inconvenient. The data obtained through a
combination of time and eftort were valuable, and the results made us happy
or sometimes disappointed. Nowadays, however, labs and institutes are
filled with analytical instruments, from everyday workhorse tools used in
every undergraduate lab to advanced developmental pieces of equipment
that are rarely used.

Instruments have generally been improved from analog to digital, and
anyone can easily obtain data by pressing the START button. However, the
more convenient it becomes, the more we are accustomed to always having
the data and the less impressed we are. Last century, in a more inconvenient
era, we had the time to learn about the measurements while waiting for
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vl Preface

access or data collection to complete. Since measurement data were rarely
obtained, we could ponder the obtained spectrum and the sequence of
numbers all night long. It is generally believed that “more convenience
enriches society,” and so the world of instrumental analysis has developed
steadily. However, we may sometimes feel, “There is no need to make
everything more convenient.” We need more time to face the measurements
and consider the obtained data.

This book serves as a comprehensive commentary and introduction
to instrumental analyses of metal complexes, a valuable resource for all
chemists. It covers nearly all the instruments necessary for modern research,
meeting the demands of this era. However, it’s essential for the reader not to
be complacent with this book alone. They should be inspired to strive for a
deeper understanding by exploring the more specialized books referenced in
this text, fostering a continuous learning mindset.

A deeper understanding will foster intuition and lead to discovery.

Hiroki Oshio and Graham N. Newton
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CHAPTER 1

Magnetic Measurement

MASAAKI OHBA*?* AND MASAKI MITO"

?Kyushu University, 819-0395 Fukuoka, Japan; ® Kyushu Institute of
Technology, 804-8550 Kitakyushu, Japan
*Email: ohba@chem.kyushu-univ.jp

1.1 Introduction

Magnetic measurements are now much more familiar to researchers in in-
organic and coordination compounds than thermal and electrical resistance
measurements. Electrical resistance measurements provide information on
the electrical state by the contact method. Whereas magnetic measurements
are performed by the non-contact method, they are convenient for evaluating
the physical properties of as-synthesized samples. Magnetic measurements
give information on the microscopic state of compounds, such as electronic
state, structure, and magnetic interactions, as well as the macroscopic state,
such as magnetic transition temperature, coercive force, magnetic domain
structure, etc. Magnetic measurements have also become indispensable in
the research fields of nano-sized magnetic materials and superconductors.
Recently, magnetic measurements have become more accessible without
high operating skills. Commercially available instruments are simul-
taneously user-friendly and highly sophisticated. However, users can fall into
a trap and believe the quantified results without any doubt. It is important to
always verify the data accuracy, and sometimes one needs to go back to the
calculation process of the obtained data. In this chapter, we introduce basic
knowledge of the measurement devices and methods and show some ex-
amples of analyzing the magnetic properties of coordination compounds.
Most chemists nowadays use electromagnetic induction style devices or
superconducting quantum interference devices (SQUIDs) for magnetic
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2 Chapter 1

measurements. In this chapter, we focus on these measurement methods,
divided into static magnetic measurement (DC measurement) to detect
the magnitude of the magnetic momentum and alternating current
magnetic measurement (AC measurement) to detect the dynamic mag-
netic response to periodic external fields. In particular, the AC meas-
urement, being indispensable for evaluating magnetic properties, is
introduced in detail.

The DC measurement provides the fundamental magnetic properties of
compounds (paramagnetism, diamagnetism, magnetic interactions, etc.) as
the temperature- and field-dependences of the magnetic susceptibility. It has
been easier for chemists to carry out measurements at high cryogenic tem-
peratures and high magnetic fields with the cooperation of physicists so far.
In recent years, chemists have been able to work at cryogenic temperatures
of 0.5 K and with high magnetic fields of 10 T (tesla) in their laboratories,
although it is still difficult to use pulsed high magnetic fields. On the
other hand, the AC measurement is an important method to evaluate the
dynamic magnetization process, which yield essential data for the magnetic
property analysis of single molecule magnets, single ion magnets, single
chain magnets, spin qubits, etc. The AC measurements are divided into the
10~? Hz to 1 kHz range using SQUID and the 10 Hz to 10 kHz range using
electromagnetic induction-based devices. The AC magnetic susceptibility
data over a wide frequency range have become essential in recent research
on nano-sized magnetic materials for magnetic recording media and med-
ical applications. Here, it should be noted that commercially available
magnetic measurement devices automatically correct for eddy current eftects
and calculate the complex magnetic susceptibility, due to the presence of
metallic materials in the space where the AC magnetic field is applied. It is
essential to understand this point when attempting high-pressure experi-
ments using a pressure cell partly made of metal. The various magnetic
measurement methods presented in this chapter are classified into three
levels, and their characteristics are compared in Table 1.1."* The details are
explained below.

1.2 Static Magnetic Measurement
(DC Measurement)

When a substance with magnetic moment m is placed in a magnetic field,
the substance creates a new magnetic field called magnetization. The
magnetization value (M) in response to the uniform and steady (no time
variation) static magnetic field (H) is called a magnetization curve. Usually,
when the magnetic field H is increased from zero, the magnetization M,
which corresponds to the magnetic moment per unit volume, is proportional
to H in the small magnetic field (eqn (1.1)).

M=yH (1.1)



Table 1.1 Categorization of magnetic measurements.

Large category

Middle category

Small category

Observed physical
quantity

Measurement
accuracy [emul]

Feature

Static (DC) magnetic

measurements

Alternating current
(AC) magnetic
measurements

Dynamical
methods

Electromagnetic
induction
method

SQUID method

Electromagnetic
induction
method

SQUID method

Magnetic balance

Magnetic
pendulum
Cantilever

Capacitance
method

Extraction
methods

Sample vibration
method

Coil vibration
method

DC magnetic
method

Sample vibration
method

Coil vibration
method

Superconducting
magnetic flux
transformation

Vertical magnetic
force

Horizontal magnetic

force
Torque

Vertical magnetic
force

Electromotive force
Electromotive force
Electromotive force
Magnetic flux
Magnetic flux

Magnetic flux

Electromotive force

Magnetic flux

10°

10~°
<10 1°

10°°

10"

10~°

Simple electric and mechanical
system, zero field measurement is
possible

No influence of gravity

High field measurement is
possible

Suitable for low temperature
measurement because of small

heating
Suitable for high field, high
pressure, and low temperature

Lock-in detection is promising
Lock-in detection is promising
High accuracy, most conventional
method

Lock-in detection is promising
Lock-in detection is promising
Promising for high frequency

measurements

Promising for low frequency
measurements
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The slope y evaluated within the linear relationship of the M and H values is
called the susceptibility or magnetic susceptibility. y is usually calculated by
dividing M by H in the DC measurements. Here, M includes the contribution
from the diamagnetic field due to diamagnetic components. If only the
magnetically active elements are to be evaluated using eqn (1.1), a correction
for the diamagnetic field is necessary.” There are various methods for
measuring M, unlike AC susceptibility (see Section 1.4); static magnetic
measurements detect the magnitude of M in a static magnetic field that does
not change over time.

Next, the units of the magnetic field should be mentioned. The relation-
ship between the magnetic flux density B and the magnetic field H is as
follows.

B=u,H (1.2)

Table 1.2 lists units of H and B. In the cgs unit system, the unit of H is Oe
(oersted) and B is G (gauss). By convention, G is often used as the unit for
H in the sense of the value of H corresponding to B, based on the as-
sumption that 1 Oe=1 G from the vacuum permeability po=1. In this
case, emu (electromagnetic unit) is used as the unit of magnetic sus-
ceptibility y.

In this chapter, the static magnetic measurements (DC methods) are
classified into three methods; the mechanical method, which measures the
force acting on substances (Section 1.2.1), the electromagnetic induction
method, which measures induced electromotive force using electro-
magnetic induction (Section 1.2.2), and the superconducting quantum
interference device (SQUID) method (Section 1.2.3). Some consider the
SQUID method, which uses mutual induction in the magnetic flux con-
version between the pick-up coil system and the SQUID, to be included in
the electromagnetic induction method. But since its characteristics differ
from the original electromagnetic induction method, this chapter de-
scribes the SQUID method separately from the electromagnetic induction
method.

1.2.1 Mechanical Method

The mechanical method has been used before the SQUID method
became popular. This method measures the magnetic force exerted
on a magnetized sample by the non-uniform magnetic field between

Table 1.2 Magnetic field and magnetic flux density units.

cgs unit Conversion SI unit
Symbol system constant (cgs—-SI) system
Magnetic field H Oe 10°/4n Am™*
Magnetic flux B G 10~° T

density
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the poles of an electromagnet. When a substance with magnetic moment
m is placed in a magnetic field H, the magnetic energy is —m-H.
The following equation expresses the force F acting on the magnetic
moment.”

F= —grad(—m - H) (1.3)

=m x rot H+H x rotm+ (H - grad)m + (m - grad)H (1.4)

Here, all terms on the right-hand side of eqn (1.4) are zero except for the
fourth term, assuming no current (rotH=0) and uniformly-magnetized
sample, then the following equation is obtained.

F=(m-grad)H (1.5)

To consider eqn (1.5) in detail, place the sample at the position where the
magnetic field gradient is maximum between the poles of the electro-
magnet (Figure 1.1). In this case, the magnetic field is H= (H,, 0, 0). If the
effect of magnetic anisotropy in the crystal is ignored, the magnetic mo-
ment m is directed to the magnetic field direction. That is, m = (m,, 0, 0). In
addition, the relationship JH,/0x=C0Hy,/0x=0 holds when an electro-
magnet with symmetrical poles is used. In this case, the force F is ex-
pressed by eqn (1.6).

}F’—;r*zrz%m(aﬂ;rn@HZ—OOmaHZ (1.6)
O\ Tox’ tox” Tox) \77 T ox '
z
A
Fl

H,

Figure 1.1 Force F acting on a sample placed in a gradient magnetic field between
the poles of an electromagnet.”



6 Chapter 1

Here, 0H,/0x= 0H, /0z from the condition rot H= 0, which leads to eqn (1.7).
OH,
F= (0, 0, 1, ) (1.7)

The magnetic moment m can be calculated by measuring the force F acting
on the sample placed in a non-uniform magnetic field. For the actual force
measurement, we need to keep the sample at the position of the maximum
magnetic field gradient, so the zero-detection method, which feeds back a
signal proportional to the force, is used. The disadvantage is that the mag-
netic field of the electromagnet cannot be used eftectively because the
sample is not located at the position of the maximum magnetic field.

A representative apparatus for mechanical methods is the magnetic balance
magnetometer (Faraday method), which uses a balance for weighing. As shown
in Figure 1.2, a sample is suspended between the poles of electromagnets, and
feedback coils are placed on the other side, in which a permanent magnet is
suspended. When a current is applied to the feedback coil to keep the balance,
the magnitude of F is measured from the magnitude of the current. Since we
measure forces in the direction of gravity here, we need to compensate for the
contribution of additional forces except for magnetic forces.

On the other hand, pendulum-type magnetometers measure the force
acting in the horizontal plane, so only the magnetic force is measured. In
both cases, the magnetic moment m can be evaluated by measuring the
magnetic force using a balance. While magnetic balances have good sensi-
tivity, they are not suitable for measurement in strong magnetic fields due to
their instability against lateral shaking. Recently, strain gauges (commonly
known as load cells) have been used for force detection. Among them, a

small cantilever can be applicable for measurement under a strong magnetic
field.

A

Permanent

Magnet \
Sample ]

F Feedback Coil

Electromagnet

Figure 1.2 Schematic of a Faraday balance magnetometer.”
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Cantilever
N=mxH

Figure 1.3 Principle of magnetic measurement using cantilevers.*

Capacitor
(variable)

Sample
e

Capacitance
Bridge
-
Capacitor
(fixed)

Figure 1.4 Principle of the capacitance method.’

Moreover, due to its high natural frequency, it is also applicable under
pulsed high magnetic fields. As shown in Figure 1.3, the torque N acting
between the magnetic field H and the magnetic moment m of the sample on
the cantilever causes deflection of the cantilever, which is detected as a
change in electrical resistance.” There is also a method to measure magnetic
force through changes in the capacitance of a parallel plate capacitor
(capacitance method), as shown in Figure 1.4. This method is used for static
magnetic measurements in cryogenic regions because there is no friction
due to sample movement and no heat generation due to induced currents.”

1.2.2 Electromagnetic Induction Method

The electromagnetic induction method measures the induced electromotive
force in the form of an induced voltage generated in the direction that
interferes with the change in the magnetic flux penetrating the pick-up coil.
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When the magnitude of the magnetization M of the sample in a uniform
magnetic field or the relative position of the sample to the pick-up coil
changes with time, the pick-up coil generates an induced electromotive force
V proportional to the time derivative of the magnetic flux @ that penetrates
the pick-up coil (eqn (1.8)).

do

V- — (1.8)

From the relation @ =kM (k is the proportional constant), M is obtained as
the integral value of eqn (1.8) concerning time, where k depends on the
sample shape, coil shape, etc.

1 4
M:—J vde (1.9)
ko

There are four representative methods for generating induced electromotive
force.

(1) Vibrate the sample between the pick-up coils (vibrating sample mag-
netometer (VSM) method, Figure 1.5(a)).

(2) Vibrate the pick-up coils around the sample (vibrating coil mag-
netometer (VCM) method, Figure 1.5(b)).

(3) Move the sample in a certain direction in the pick-up coil (extraction
method).

(4) Vary the magnetic field (pulse magnetic field measurement, AC
magnetic susceptibility measurement).

For (1) and (2), the induced electromotive force V shows a periodic vari-

ation concerning time, while for (3), it does not. For (4), when a pulsed
magnetic field is used, V shows a non-periodic time variation, and M can be

Pick-up Coil

Pick-up
Coll
& a
CX] =
v v
Sample
(b) VCM

Figure 1.5 (a) VSM method and (b) VCM method.
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calculated by integrating V over time (eqn (1.9)). In the case of (4) using AC
magnetic field, V will show a periodic time variation and give an AC mag-
netic susceptibility, which is out of the category of DC measurement.
Methods (1)—(3) are outlined below.

(1)

The vibrating sample magnetometer (VSM) uses a coil to detect
changes in magnetic flux when a magnetized sample is vibrated at a
constant frequency, where the generated induced electromotive
force V is proportional to the magnetization value M of the sample.
The vibration amplitude is calculated by lock-in detection, which has
the advantage that the signal can be separated from noise com-
ponents such as power supply noise. The pick-up coils may be lo-
cated away from the sample but are often placed in the vicinity of the
sample. Since the VSM method is a relative measurement, it must be
calibrated using a standard sample with a known magnetization
value to evaluate the absolute value in the measurement. With this in
mind, the VSM is the most versatile magnetization measurement
device using the electromagnetic induction method at the laboratory
level.

The vibrating coil magnetometer (VCM) is an apparatus in which the
sample position is fixed, and the pick-up coil is vibrated. When a thin
pick-up coil is used, it is vibrated near the position where the magnetic
flux from the sample changes with the largest position derivative.® So,
it 1s not always good to place the pick-up coils at the same height as
the sample. VCM is eftective when the sample and pick-up coils must
be spatially separated, but it is less popular than VSM.

The extraction method has long been used in many high magnetic
field facilities to measure magnetization curves under high magnetic
fields. The advantage i1s that measurements can be performed effi-
ciently even with slow sweep-speed magnets, such as high-field
superconducting magnets. However, since the sample is moved sig-
nificantly between the coils, magnetization and demagnetization are
repeated at each sample movement. This has the disadvantage that
the measured value fluctuates per measurement for samples ex-
hibiting magnetic hysteresis, such as in ferromagnetic materials.
Figure 1.6 shows an example of the extraction method using a
superconducting magnet. This system is designed to measure under
multiple extreme environments of high magnetic field, high pressure,
and low temperature.” Figure 1.7 shows the change in induced voltage
Vi1 when the sample is extracted from the pick-up coils. Point A is the
starting point of the movement, and the voltage at point A is the oftset
voltage V,,. Between points B and C, the sample moves inside the space
between the pick-up coils. The area of the shaded part is determined
from the maximum and minimum values of the induced current /. It is
proportional to the M of the sample, independent of the sample ex-
tracting speed.




10

Chapter 1

Magnetzation Measurement System
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Figure 1.6

Figure 1.7

Block diagram of the magnetization measurement system using the
extraction method under multiple extreme condltlons of the high
magnetic field, high pressure, and low temperature.” Adapted from
ref. 7 with permission from AIP Publishing, Copyright 1998.

S r
4 [Max((n)) \
3 | — Min(/(r))
- 3 Vtm)
= 1
; \
—1 v, C
-2 Min(f(n))
_3 i | -
o 1 2 3 4 5 6 7

m (x10% counts)

Variation of the signal voltage generated in the magnetization pick-up
colls by the extraction method The area of the shaded part i1s pro-
portional to M of the sample.” Adapted from ref. 7 with permission
from AIP Publishing, Copyright 1998.

1.2.3 SQUID Method

A SQUID is

a weakly coupled superconducting device (Josephson junction)

that can directly measure changes in the magnetic flux @. The tunnel current
flowing between junctions is modulated by the number of magnetic fluxes,
and the voltage across SQUID has periodic characteristics concerning changes

In magnetic

flux. A SQUID magnetometer measures the number of magnetic

fluxes produced by a sample as quantum flux @, (=2.06783461 x 10~ "> Wb)
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units using the above principle. The basic structure of a SQUID magnetometer
consists of a SQUID for magnetic flux detection, a magnetic flux conversion
circuit that transmits the magnetic flux of the measurement space to the
magnetic flux detection section, and an electronic circuit to extract voltage
signals from the SQUID. Typically, a feedback mode is used to linearize the
nonlinear characteristics between the voltages across the SQUID and the
magnetic flux changes. Such a flux-locked loop (FLL) circuit, commonly called
the zero detection method, can provide a detection sensitivity that is about
1/100 for @,. The measurement sensitivity is superior to other general-purpose
measurement methods.

There are two types of SQUIDs: rf-SQUIDs, which have one Josephson
junction in the superconducting ring, and de-SQUIDs, which have two.*”
Figure 1.8 shows a block diagram of the rf-SQUID system.® Firstly, the tank
circuit (LC parallel resonance circuit) is excited by a constant current
source at its resonant frequency (typically in the rf band of 20-30 MHz).
The rf-SQUID is driven by circulating current in the ring due to electro-
magnetic induction. The voltage of the tank circuit coupled to the rf-SQUID
is amplified and detected, followed by phase detection at the modulation
frequency. The output is fed back to the SQUID by a resistor Ryg and
feedback coil. Figure 1.9 shows an example block diagram of a de-SQUID
system driven by a DC current source. While rf-SQUIDs resist external
disturbances (noise), they are inferior to de-SQUIDs in terms of sensitivity.
On the other hand, dc-SQUIDs have the advantages of high sensitivity
and fast response but are more susceptible to external disturbances than
rf-SQUIDs.

The advantage of SQUIDs is that they can provide high reliability as well as
high measurement accuracy when fabricating general-purpose devices.
However, there is a problem that the pick-up coil, which consists of a
superconducting wire (typically NbTi with a superconducting transition
temperature of 9 K), must be maintained below the superconducting tran-
sition temperature during the measurement. To perform measurements over

if -Oscillator

——  Preamplifier Multiplier Integrator

Input 2 - >0
if detector |

Modulation Generator

Feedback Coil L AA NN

Figure 1.8 A block diagram of the rf-SQUID system.®
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Figure 1.9 A block diagram of the dc-SQUID system.®

a wide temperature range, the pick-up coil must be thermally isolated from
the sample space and placed in a low-temperature heat bath, even at the
expense of detection sensitivity. If the pick-up coil is placed close to the
sample to increase its filling factor, the temperature of the pick-up coil may
increase with increasing the sample temperature, which will cause the
SQUID system to fail.

1.2.4 Difference Between the SQUID and Electromagnetic
Induction Methods - Superconducting and Normal-
conducting Magnetic Flux Conversion Method

The SQUID method includes the micro-SQUID method, in which the SQUID
itself 1s used as the pick-up coil, but this is not suitable for conventional
SQUID magnetometers in which the sample is frequently replaced. There-
fore, we place the sample at a distance from the SQUID and use a mech-
anism to transmit the change in magnetic flux to the SQUID. Usually, a
magnetic flux conversion circuit is employed for this mechanism, in which a
closed loop is formed with the pick-up coil that detects the magnetic flux of
the sample, and the signal coil that transforms the magnetic flux signal to
the SQUID (Figure 1.10). Here, the self-inductance of the SQUID is described
as L, and the self-inductance and the winding number of both the pick-up
coil and the signal coil are described L,, n,, and L,, n,, respectively. The
optimization of this magnetic flux conversion circuit is so important that it
aftects the accuracy of magnetic measurements. Consider the following two
cases; case 1, that all of the magnetic flux conversion circuits are in the
superconducting state, and case 2, that some or all are in the normal con-
ducting state. Case 2 corresponds to the abovementioned case of which the
pick-up coil made of superconducting wire is placed close to the sample and
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Figure 1.10 Magnetic flux conversion circuit.

changed to the normal-conductive state due to the sample temperature
increase.

When the magnetic flux conversion circuit is all in a superconducting
state and a superconducting closed loop is realized, it is called a super-
conducting magnetic flux conversion scheme. In this circuit, the magnetic
flux @ penetrating the circuit is kept constant. If the pick-up coil senses a
magnetic flux change in @, the superconducting current I flows through the
circuit, which counteracts the change, satisfying eqn (1.10).

Pny + (L1 + L)I=0 (1.10)

In this case, a magnetic flux change &' =L,I is induced in the signal coil,
which is equal in magnitude but opposite in sign to that of the magnetic flux
change in ¢. The magnetic flux change @ in the signal coil provides mag-
netic flux &g to the SQUID through mutual inductance M;.

b = M;I (1.11)

The advantage of this detection method is that it can transmit a direct
current (steady) signal using a superconducting current always flowing in
the circuit, i.e., directly detecting static magnetization. Here, the relation-
ship, eqn (1.12), is held between the magnetic flux change in ¢ detected in
the pick-up coil and the magnetic flux @g transmitted to the SQUID.

M;ny

Ds = — 0 1.12
> L1+ L, ( )

The coils should be designed to maximize ®g so that M;n,/(L, + L,) is maxi-
mized. Maximizing Mmn,/(L, + L,) and increasing M; makes the coupling
constant K (K* = M;*/L,L,) close to 1, finally leading to the condition of L, = L,.

Next, consider the case where the superconducting loop of the magnetic
flux conversion circuit is fallen to normal-conductive. This is the normal-
conducting magnetic flux conversion scheme instead of the superconduct-
ing one described above. When a time-varying magnetic flux @ is given to the
pick-up coil, an induced electromotive force V is generated in the circuit and
an induced current I; flows accordingly. V and I; through the circuit are given
by eqn (1.13) and (1.14), respectively, where Z; (=iwL,) and Z, are the
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