

# **DENTAL LABORATORY PROCEDURES**

## **COMPLETE DENTURES**

Second South and South-East Asia Edition

# DENTAL LABORATORY PROCEDURES

## COMPLETE DENTURES

**Volume One**  
**Second South and South-East Asia Edition**

Edited by

**Robert M. Morrow, D.D.S., F.A.C.D., F.I.C.D**

Associate Dean for Advanced Education,  
Professor and Head, Postdoctoral Division,  
Department of Prosthodontics,  
The University of Texas Health Science Center  
at San Antonio, Dental School,  
San Antonio, Texas

**Kenneth D. Rudd, D.D.S., F.A.C.D., F.I.C.D**

Associate Dean for Continuing Education,  
Professor of Prosthodontics, Department of Prosthodontics,  
The University of Texas Health Science Center  
at San Antonio, Dental School,  
San Antonio, Texas

**John E. Rhoads, D.D.S., F.A.C.D., F.I.C.D**

Formerly Associate Professor, Prosthetic Dentistry,  
University of the Pacific, School of Dentistry,  
San Francisco, California

*Adaptation Editor*

**Sanjna Nayar, M.D.S, Ph.D**

Fellow, The International Congress of Oral Implantologists,  
Master of the Implant Prosthetic Section,  
The International Congress of Oral Implantologists  
Professor and Head of the Department, Department of Prosthodontics,  
Sree Balaji Dental College and Hospital,  
Bharath Institute of Higher Education and Research,  
Chennai, Tamil Nadu, India





**RELX India Pvt. Ltd.**

*Registered Office:* 818, Indraprakash Building, 8th Floor, 21, Barakhamba Road, New Delhi-110001

*Corporate Office:* 14th Floor, Building No. 10B, DLF Cyber City, Phase II, Gurgaon-122 002, Haryana, India

**Dental Laboratory Procedures, 3 Volume Set, 2e, by Robert M Morrow, Kenneth D Rudd, John E Rhoads**

Copyright @ 1986 by The C.V. Mosby Company

**Previous Edition Copyrighted 1981**

All rights reserved.

ISBN: 9780801635274

This adaptation of Dental Laboratory Procedures, 2e (3 Volumes Set) by Robert M Morrow, Kenneth D Rudd, John E Rhoads was undertaken by RELX India Private Limited and is published by arrangement with Elsevier Inc.

**Dental Laboratory Procedures, 3 Volume Set, Second South and South-East Asia Edition**

**Adaptation Editor:** Sanjna Nayar

Copyright © 2021 by RELX India Private Limited.

Adaptation ISBN: 978-81-312-5609-1

Adaptation e-ISBN: 978-81-312-5610-7

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: [www.elsevier.com/permissions](http://www.elsevier.com/permissions).

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

**Notice**

The adaptation has been undertaken by RELX India Private Limited at its sole responsibility. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds or experiments described herein.

Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made.

To the fullest extent of the law, no responsibility is assumed by Elsevier, authors, editors or contributors in relation to the adaptation or for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

This publication is licensed for sale in India, Bangladesh, Pakistan, Nepal, Srilanka, Bhutan, Maldives, Singapore, Malaysia, Brunei, Indonesia, Philippines, Thailand, Vietnam, Cambodia, Laos and Myanmar only. Circulation of this version outside these territories is unauthorized and illegal.

*Content Strategist:* Ruchi Mullick

*Content Project Manager:* Ayan Dhar

*Production Executive, OR&F:* Dhan Singh Rana

Printed in India by

# Contents

**1 Effective Dentist–Technician Communication 1**  
Sanjna Nayar

**2 Preliminary Impressions Care and Pouring 10**  
Kenneth D. Rudd | Robert M. Morrow | Sanjna Nayar

**3 Impression Trays 22**  
Kenneth D. Rudd | Robert M. Morrow | Sanjna Nayar

**4 Final Impressions, Boxing and Pouring 39**  
Kenneth D. Rudd | Robert M. Morrow | Earl E. Feldmann | Sanjna Nayar | Suchita Tella Bhalerao

**5 Record Bases and Occlusion Rims 59**  
Kenneth D. Rudd | Robert M. Morrow | Sanjna Nayar | Suchita Tella Bhalerao

**6 Articulators and Mounting Casts 89**  
Kenneth D. Rudd | Robert M. Morrow | Sanjna Nayar

**7 Artificial Teeth 116**  
Kenneth D. Rudd | Robert M. Morrow | Clarence L. Koehne | William B. Akerly | S. Raghavendra Jayesh | Sanjna Nayar

**8 Arranging of Artificial Teeth 128**  
Richard A. Smith | A. Andersen Cavalcanti | Hugh E. Wolfe | Sanjna Nayar

**9 Waxing and Processing 158**  
Kenneth D. Rudd | Robert M. Morrow | Earl E. Feldmann | Ambrocio V. Espinoza | Charlotte A. Gorney | Sanjna Nayar | Ramyaa D

**10 Finishing, Polishing, Denture Markers and Denture Duplication 181**  
Kenneth D. Rudd | Robert M. Morrow | Ambrocio V. Espinoza | Jesse S. Leachman | Sanjna Nayar | V Vikram

**11 Characterisation of the Complete Dentures 204**  
Sanjna Nayar | U. Aruna

**12 Metal Bases 229**  
James S. Brudvik | Sanjna Nayar

**13 Relining and Rebasing 241**  
Kenneth D. Rudd | Robert M. Morrow | R. Neal Edwards | Ambrocio V. Espinoza | Suchita Tella Bhalerao | Sanjna Nayar

**14 Soft Liners 259**  
Michael J. Maginnis | Gerald T. Gaubert | Suchita Tella Bhalerao | Sanjna Nayar

**15 Repairs 272**  
Kenneth D. Rudd | Robert M. Morrow | Alexander R. Halperin | Sanjna Nayar | Suchita Tella Bhalerao

**16 Laboratory Procedures for Immediate Complete Dentures 295**  
Kenneth D. Rudd | Robert M. Morrow | U. Aruna | Sanjna Nayar

**17 Maxillofacial Prosthetics 336**  
Fredrick M. Matvias | Sanjna Nayar | S. Bhuminathan | Ramyaa D

**18 Sterilisation and Disinfection 365**  
Ramakrishna Shenoi | Sanjna Nayar | V Vikram

**Index 375**

For additional digital resources on the chapters please log on to your account on [www.medenact.com](http://www.medenact.com)

# Effective Dentist–Technician Communication

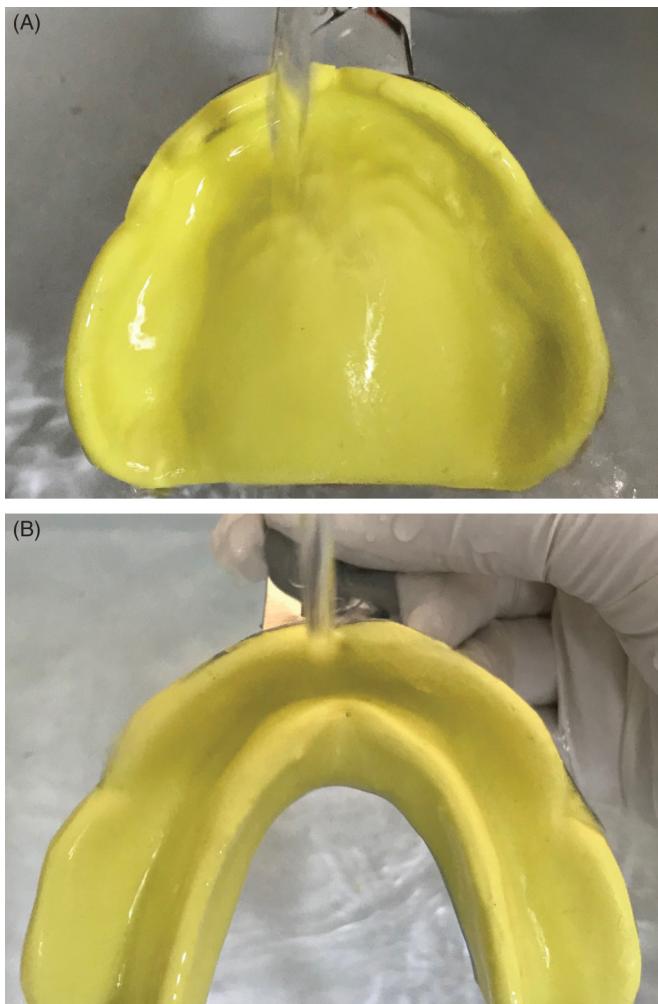
Sanjna Nayar

## CHAPTER OUTLINE

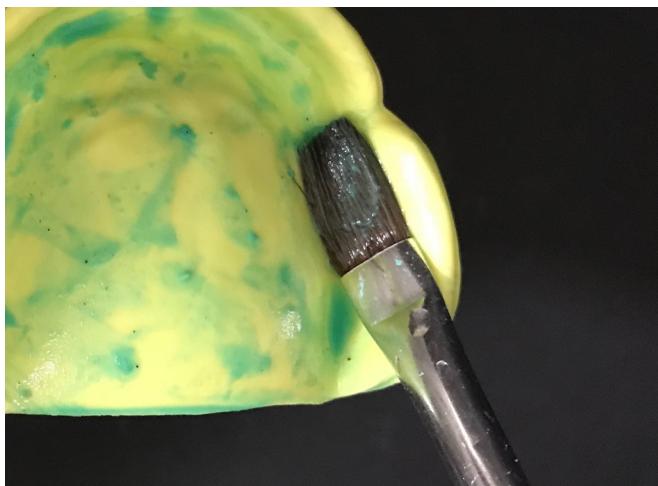
|                                              |                                                  |
|----------------------------------------------|--------------------------------------------------|
| INTRODUCTION                                 | Developing the relationship                      |
| PARADIGM OF DENTIST–TECHNICIAN COMMUNICATION | Agreements                                       |
| BASIC COMMUNICATION PRINCIPLES               | LEGAL AND ETHICAL OBLIGATIONS                    |
| MEDIUM OF COMMUNICATION                      | BETTER COMMUNICATION = BETTER TREATMENT PLANNING |
| BARRIERS IN COMMUNICATION                    | RECENT ADVANCES IN DENTAL COMMUNICATION          |
| PARAMETERS IN COMMUNICATION                  | TOOTH SHADES SOFTWARE                            |
| Ethical parameters                           | WORK AUTHORISATION                               |
| Legal parameters                             | TERMINOLOGY                                      |
| FEEDBACK                                     | EVALUATION AND FEEDBACK FROM THE DENTIST         |
| PLANNING THE COMMUNICATION                   | CONCLUSIONS                                      |
| TECHNICIAN SOLICITING NEW ACCOUNTS           |                                                  |
| DENTIST IN SEARCH OF A LABORATORY            |                                                  |
| Selection of laboratory: considerations      |                                                  |

## INTRODUCTION

The dentist and the technician are the incontrovertible warp and weft of the web of professional service, essential for engendering successful restorations. The technician input is based on the ability to translate oral vision into three-dimensional reality. Rapid evolution of dental technology has enhanced the use of indirect restorations, whilst reducing chair-side time. Therefore, flawless interaction between the dentist and the technician is the essential bedrock of successful indirect restorations. In fact, it makes optimum sense to have combined learning of latest research to ensure perfect delivery of outcome.


The dentist's ability is based on clinical reflection of biological factors, pathological concern and knowledge of mechanics. Verbal and non-verbal communication is the indispensable element of such human interaction. Such communication needs to be the harbinger of appropriate, accurate and opportune information transfer, for successful prosthodontic treatment. Conversely, lack of effective communication can lead to defective products (prosthetic appliance/dentures) and botched treatment.

Communication (from Latin 'communicate', meaning 'to share') is the activity of exchange of information between two or more participants in order to convey or receive the intended meanings through a shared system. Effective communication is a critical interpersonal skill all dentists should


master. He/she must be understood clearly by colleagues, associates as well as par dental personnel. The laboratory technician is an important stakeholder in indirect prosthetic restorations. Effective communication between the dentist and technician is vital to preclude stress in the laboratory work. Apart from managing patient expectations, the consensual desired outcomes need to be lucidly conveyed to the laboratory, for ensuring an appropriate appreciation of both the endeavour and the anticipated results.

## PARADIGM OF DENTIST–TECHNICIAN COMMUNICATION

The quality of dental care is maximised when dentist and technicians are communicating well. This communication may take place in person, in writing, over voice or technically through digital models. A survey of fixed prosthodontic laboratories conducted by Aquilino et al. identified consistent complaints from dental technicians of inadequacies in the quality of clinical products they received, as well as insufficient information on the work authorisation form (Farah et al., 1991). In 1994, a programme was developed to improve the quality of laboratory submissions and the returned product, facilitating laboratory communication (Maxson and Nimmo, 1997). Goodacre et al. offered specific recommendations for dental educators to address the ramifications and responsibilities of future dental practitioners



**Fig. 2.4** Preliminary impression washed thoroughly in running tap water. (A) Maxillary impression and (B) mandibular impression



**Fig. 2.5** Wet the impression and scrub in the model plaster gently with a soft camel's hair brush

camel's hair brush (Fig. 2.5). Flush the impression with water to make certain that no model plaster remains on the impression (Fig. 2.6).

3. Remove excess moisture from the impression with a gentle stream of air (Fig. 2.7). Do not use a strong blast



**Fig. 2.6** Flush the impression with water to make certain that no model plaster remains on the impression



**Fig. 2.7** Carefully remove excess moisture from impression with gentle stream of air

of air because it can dislodge the impression material from the tray. Once loosened from the tray, it cannot be repositioned accurately. The surface of the alginate impression should not be absolutely dry; it should glisten or shine. However, no droplets or liquid film should be discernible. To prevent dehydration of the impression, mix the model plaster immediately. Usually, it is best to avoid creating tongue space with wax since it is difficult to make wax stick to the alginate, and the procedure requires more time.

4. With a sharp instrument (BP blade) trim excess alginate that extends beyond the back of the tray (Fig. 2.8A–B) and then immerse the impression in 2% gluteraldehyde solution for not more than 10min (Fig. 2.9). The impression is safely secured to the tray holder or two pieces of wood 1 × 2 inches (2.5 × 5 cm) have been fastened together with spacer between them and attached to case pan to support impression tray (Figs 2.10 and 2.11). This step prevents any alginate from touching the laboratory bench when the impression rests on it. If excess material comes in contact with the bench top, distortion of the impression could result. If presence of excess material is vital to the impression making trimming impossible, support the impression by the tray handle.



Fig. 21.43 Occlusion checked on the articulator



Fig. 21.44 Finished appliance—occlusal surface



Fig. 21.45 Finished appliance—tissue surface

**Table 21.1 Troubleshooting Chart for Custom Mouth-Guard Construction**

| Problem                                                    | Probable Cause                                                       | Solution                                                                                        |
|------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| [2,0] Mouth guard too thin to afford protection            | Mouth-guard material too hot when adapted                            | Check the recommended heating time                                                              |
|                                                            | Cast too thick, resulting in over-thinning of material (tent effect) | Trim cast so base is approximately 5-mm thick in palate or properly cover the cast with pellets |
|                                                            | Cast not trimmed properly                                            | Trim away deep vestibular extensions, which may cause bridging during adaptation                |
| [1,0] Mouth-guard material did not adapt initially to cast | Hole not placed in palate of cast                                    | Place a hole with a No. 8 bur in the palate to vent air and ensure adaptation in this area      |
|                                                            | Material not hot enough for adaptation                               | Check the recommended heating time                                                              |

# Index

## A

- Acrylic resin trays, 47–50
- Adams clasp, 169
- Alginate, 1
- Alginate irreversible hydrocolloid impressions, 2–4
- Alloy, 185
- All-plastic partial dentures with and without clasps, 280, 281
- Ancrofix attachment, 341, 342
- Anneal, 159
- Anterior repositioning appliance, 413
- Aqueous impression materials, 1
- Artificial teeth
  - selecting, 193
  - and arranging teeth, 194, 204
  - anterior teeth, 194
  - posterior teeth, 195–201
- Attachments, 333, 335
  - auxiliary attachment, 336
  - bar attachment, 336
  - classification of, 299
  - ideal requirements of, 299
  - provide basic principles, 299
  - Rothermann rigid attachment, 338
  - stud attachment, 336
- Auto-polymerising repair resins, 257
- Auto-polymerising resin record bases, 57
  - finger-adapted dough method, 66
  - sprinkle-on method, 57
  - sprinkle-on method with framework, 63
  - wax-confined dough method, 70

## B

- Baer attachment, 341
- Ball clasp, 168
- Bar attachments, 352, 370
  - anterior–posterior distance rule, 373
  - distance between implants, 370
  - fundamentals of, 370
  - guidelines for denture base extension, 374
  - sagittal relationship of the bar to alveolar ridge, 372
  - bar to the hinge axis, 373
  - vertical relationship of bar to alveolar ridge, 371
- Basic cast tilts, 108
- Beading and boxing corrected cast impression with wax, 27–31
- Beading corrected cast impression with wax and two-stage pour, 32–36
- Block-out, 124, 135
  - arbitrary block-out, 127
  - machinists drawing for excellent block-out tool, 125
  - shaped block-out or ledging, 126
  - types of, 124–126
- Boxing corrected cast impression with plaster + pumice mix and wax, 23–27
- Brazing (soldering) techniques, 247, 248
- Burnout, 180, 183

## C

- CAD/CAM technology, 118
- Cast tilting, 106
- Cast, requisites for, 1
- Casting, 177, 181–183
  - cleaning, 182, 183
  - pickling, 182
- Ceka resilient, 344
  - direct casting procedure (ceramax 1), 344
  - direct processing phase of resilient ceka, 345
  - rigid ceka, 346
- indirect processing phase of the resilient ceka, 345
- re-basing ceka overdentures, 346
- riveting the ceka spring pin, 346
- soldering procedure, 344
- Circumferential clasp arms, 163
- Clasp, 159
  - act as a 'bottle opener', 299
  - attachment, 170
  - basic parts of, 299
  - contouring, 162
  - laser welding, 266, 271, 272
  - repair, 251
- C.M. rider, 356
- Cobalt-chromium alloys, 161
- Cobalt-chromium casting, 185
- Coping, 333
- Coping impression, 333
- Correcting processing errors, 209, 214–217
- Cu-Sil dentures, 291
- Cusp plane angle, 193
- Custom acrylic resin tray, 51
- Custom impression trays, requirements for, 44
- Custom mouth-guard construction, troubleshooting chart for, 440
- Custom trays, 45–47

## D

- Dalla bona attachment, 341
- Deflasking, 209, 213, 214
- Denture base fractures, 258
  - complex fractures, 259, 260
  - simple fractures, 258, 259
  - involving teeth, 259
- Design, 90
- Design transfer, 120–124, 135, 146–148
- Designed diagnostic casts, 120
- Diagnostic cast (study, preoperative cast), 56
- Diagnostic casts, preparation of, 405, 408
- Diagnostic temporomandibular joint (TMJ) and/or bruxism appliances, 411
- N,N-Di-methyl-*p*-toluidine, 57
- Dolder bar joint, 352, 353
- Dual path of insertion design, requirements of, 276–280
- Dual path of insertion for removable dentures, 275, 276
- Dual path of insertion removable partial dentures, 275
- Duplicate master casts, 215
- Duplicating flask, 137

- Duplication, 124, 136, 143
  - preparing casts for, 124
- DUROL hardening liquid, 144

## E

- Elastomeric impressions, 17
- Electronic surveying, 118
- Electropolishing framework, 190
- Embrasure, 159
- Extracoronal attachment, technical procedure for, 298, 322
  - acrylic inserts, 326
  - care of the refractory cast, 323
  - designing of the framework, 324, 325
  - fabrication of the wax pattern, 322
  - fitting the framework and recording the jaw relation, 326
- investing, burn out and casting, 322, 323
- investing, burn out and casting of framework, 324, 325
- rechecking the path of the insertion, 322
- replacement teeth, 326
- surveying, block out and construction of refractory cast, 322–324

## F

- Fabrication of interceptive orthodontic appliances, 396
- accurate diagnosis, 397
- acrylic repair and modifications, 404–406
- anterior and posterior bite plate, 402, 403
- appliance construction, 398
- habit-breaking appliance, 403
- Hawley appliance, 400, 401
- prescription, 397
- transpalatal appliance, 398, 399
- working cast, 397, 398
- Finishing, 210, 218–220
- Finishing framework, 185–191
- Fixed removable partial dentures (Andrews bridge), 292
- Flame, 172, 173
- Flasking, 203, 205–208, 212
- Flaskless method for processing denture bases, 216, 220–225
- Flexible dentures, 292
- Flexite MP, 296
- Flexite plus, 296
- Flexite thermoplastic fluoropolymer (teflon), 296
- Fractured and missing teeth, 260, 261
- Frictional attachment, 298

## G

- Gerber attachment, 341, 343
- Gold alloy, 159

## H

- Hader bar, 355
  - metal base procedure, 355
  - metal rider replacement, 355
  - re-basing procedure, 355