

CELLULAR AND
MOLECULAR
IMMUNOLOGY

CELLULAR AND MOLECULAR IMMUNOLOGY

ELEVENTH EDITION

Abul K. Abbas, MBBS

Emeritus Professor, Department of Pathology
University of California San Francisco
San Francisco, California

Andrew H. Lichtman, MD, PhD

Professor of Pathology, Harvard Medical School
Brigham and Women's Hospital
Boston, Massachusetts

Shiv Pillai, MBBS, PhD

Professor of Medicine and Health Sciences
and Technology, Harvard Medical School
Massachusetts General Hospital
Boston, Massachusetts

Sarah E. Henrickson, MD, PhD

Assistant Professor of Pediatrics, Children's
Hospital of Philadelphia and Perelman School of
Medicine, University of Pennsylvania
Philadelphia, Pennsylvania

Illustrations by
David L. Baker, MA

Molecule Medical Arts
Asheville, North Carolina

ELSEVIER

Elsevier
1600 John F. Kennedy Blvd.
Ste 1800
Philadelphia, PA 19103-2899

CELLULAR AND MOLECULAR IMMUNOLOGY, ELEVENTH EDITION
INTERNATIONAL EDITION

ISBN: 978-0-443-28358-1
ISBN: 978-0-443-38011-2

Copyright © 2026 by Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

For accessibility purposes, images in electronic versions of this book are accompanied by alt-text descriptions provided by Elsevier. For more information, see <https://www.elsevier.com/about/accessibility>.

Books and Journals published by Elsevier comply with applicable product safety requirements. For any product safety concerns or queries, please contact our authorised representative, Elsevier B.V., at productsafety@elsevier.com.

Publisher's note: Elsevier takes a neutral position with respect to territorial disputes or jurisdictional claims in its published content, including in maps and institutional affiliations.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notice

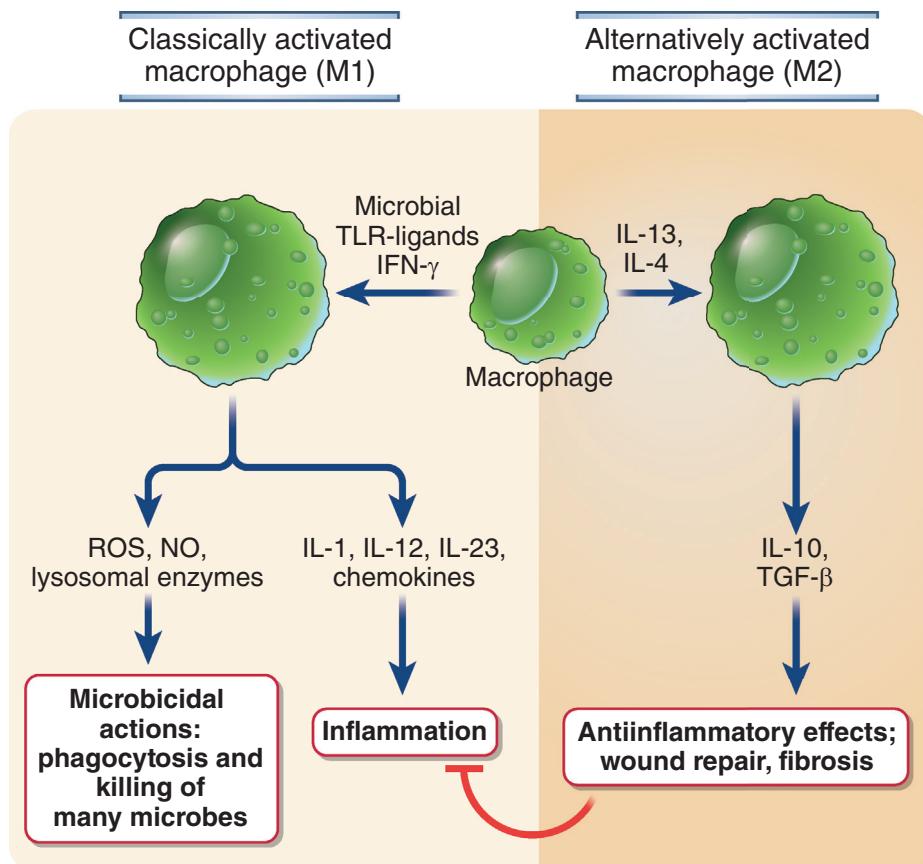
Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds or experiments described herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made. To the fullest extent of the law, no responsibility is assumed by Elsevier, authors, editors or contributors for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Previous editions copyrighted 2022, 2018, 2015, 2012, 2007, 2005, 2003, 2000, 1997, 1994, and 1991.

Content Strategist: Jeremy Bowes
Content Development Specialist: Rebecca Grulow/ Nicholas Henderson
Publishing Services Manager: Deepthi Unni
Project Manager: Haritha Dharmarajan
Design Direction: Ryan Cook

Printed in India.

Last digit is the print number: 9 8 7 6 5 4 3 2 1


Working together
to grow libraries in
developing countries

www.elsevier.com • www.bookaid.org

CONTENTS

- 1 Overview of the Immune System, 1**
- 2 Cells and Tissues of the Immune System, 13**
- 3 Leukocyte Circulation and Migration Into Tissues, 42**
- 4 Innate Immunity, 61**
- 5 Antibodies and Antigens, 105**
- 6 Antigen Presentation to T Lymphocytes and the Role of Major Histocompatibility Complex Molecules, 126**
- 7 Immune Receptors and Signal Transduction, 154**
- 8 Lymphocyte Development and Antigen Receptor Gene Rearrangement, 191**
- 9 Activation and Regulation of T Lymphocytes, 221**
- 10 Differentiation and Functions of CD4⁺ Effector T Cells, 239**
- 11 Differentiation and Functions of CD8⁺ Effector T Cells, 257**
- 12 B-Cell Activation and Antibody Production, 267**
- 13 Effector Mechanisms of Humoral Immunity, 293**
- 14 Specialized Immunity at Epithelial Barriers and in Immune-Privileged Tissues, 318**
- 15 Immunologic Tolerance and Autoimmunity, 344**
- 16 Immunity to Microbes, 367**
- 17 Transplantation Immunology, 391**
- 18 Tumor Immunology, 417**
- 19 Hypersensitivity Disorders, 440**
- 20 Allergy, 462**
- 21 Congenital and Acquired Immunodeficiencies, 484**

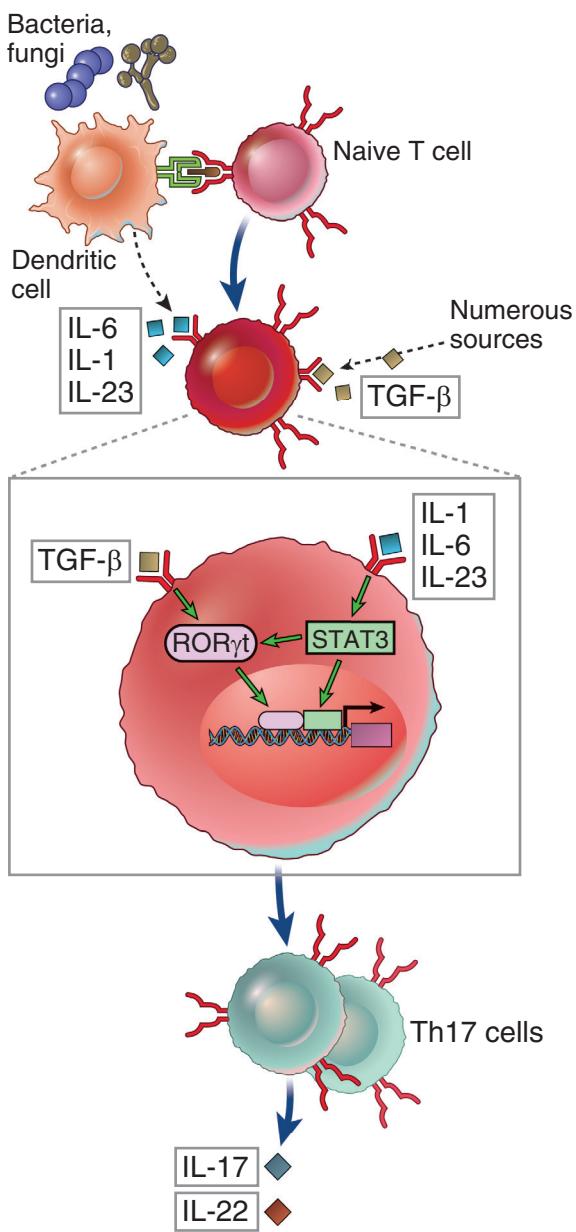
Glossary, 511
Appendix I: Principal Features of Selected CD Molecules, 534
Appendix II: Cytokines, 542
Appendix III: Laboratory Techniques Commonly Used in Immunology, 546
Index, 561

Fig. 10.10 Classical and alternative macrophage activation. Different stimuli activate tissue macrophages to develop into functionally distinct populations. Classically activated macrophages are induced by microbial products and cytokines, particularly interferon- γ (IFN- γ), and are microbicidal and promote inflammation. Alternatively activated macrophages are induced by interleukin-4 (IL-4) and IL-13 produced by Th2 cells and other leukocytes and function to control inflammation and to promote tissue repair and fibrosis. Some evidence suggests that M2 macrophages comprise subpopulations, some of which are mainly anti-inflammatory and others are responsible for tissue repair. NO, Nitric oxide; ROS, reactive oxygen species; TGF- β , transforming growth factor- β ; TLR, toll-like receptor.

that TGF- β , which is produced by many cell types and is an anti-inflammatory cytokine (see Chapter 15), promotes the development of proinflammatory Th17 cells when other mediators of inflammation, such as IL-6 or IL-1, are present. Th17 differentiation is inhibited by IFN- γ and IL-4; therefore, strong Th1 and Th2 responses tend to suppress Th17 development.

The development of Th17 cells is dependent on the transcription factors ROR γ t and STAT3 (see Fig. 10.11). TGF- β and the inflammatory cytokines, mainly IL-6 and IL-1, work cooperatively to induce the production of ROR γ t, a transcription factor that is a member of the retinoic acid receptor family. ROR γ t is a T cell-restricted protein encoded by the RORC gene, so sometimes the protein may be called RORc. Inflammatory cytokines, notably IL-6, activate the transcription factor STAT3, which functions with ROR γ t to drive the Th17 response.

Th17 cells are abundant in mucosal tissues, particularly of the gastrointestinal tract, suggesting that the tissue environment influences the differentiation and maintenance of this subset, perhaps by providing high local concentrations of TGF- β and inflammatory cytokines. This observation also suggests that Th17 cells may be especially important in combating


intestinal infections and in the development of pathologic intestinal inflammation. The development of Th17 cells in the gastrointestinal tract is dependent on the gut microbiome; in mice, commensal bacteria related to *Clostridium* species are potent inducers of Th17 cells.

Functions of Th17 Cells

Th17 cells combat microbes by recruiting leukocytes, mainly neutrophils, to sites of infection (Fig. 10.12). Phagocytosis by neutrophils is a major defense mechanism against many common bacteria and fungi that can survive outside cells but are killed in the phagolysosomes of neutrophils. Th17 cells play an important role in defense against these infections by bringing neutrophils to the microbes. Most of the functions of Th17 cells in host defense are mediated by IL-17, but other cytokines produced by this subset may also contribute.

Interleukin-17

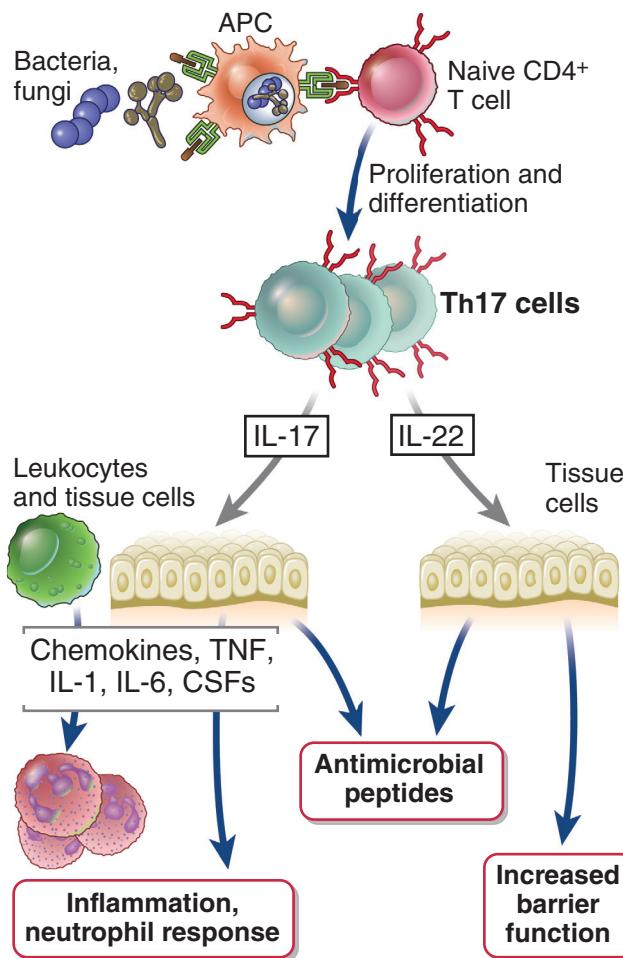
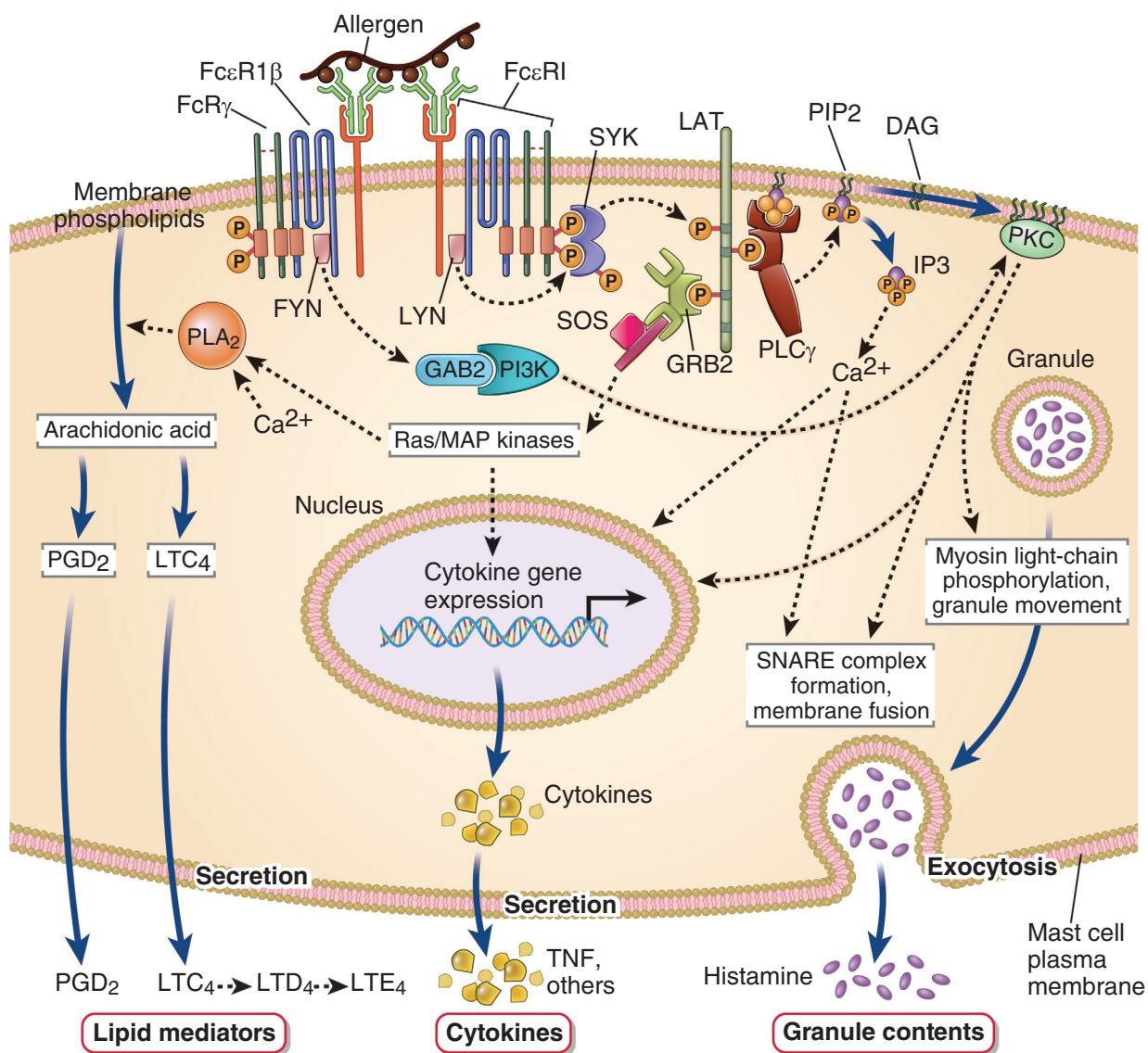

IL-17 is an unusual cytokine because neither it nor its receptor is homologous to any other known cytokine-receptor pair. The IL-17 family includes six structurally related proteins, of which

Fig. 10.11 Differentiation of Th17 cells. Interleukin-6 (IL-6) and IL-1 produced by antigen-presenting cells (APCs) and transforming growth factor- β (TGF- β) produced by various cells activate the transcription factors ROR γ t and STAT3, which stimulate the differentiation of naive CD4⁺ T cells to the Th17 subset. IL-23, which is also produced by APCs, especially in response to fungi, promotes proliferation of the differentiating Th17 cells. TGF- β may promote Th17 responses indirectly by suppressing Th1 and Th2 cells, both of which inhibit Th17 differentiation (not shown). IL-21 produced by the Th17 cells amplifies this response.

IL-17A and IL-17F are the most similar, and the immunologic functions of this cytokine family are mediated primarily by IL-17A. IL-17A is produced by Th17 cells as well as ILC3s and some $\gamma\delta$ and CD8⁺ T cells. IL-17 receptors are multimeric and expressed on a wide range of cells (see Chapter 7). They activate NF- κ B and other transcription factors.

IL-17 is an important link between T cell-mediated adaptive immunity and the acute inflammatory response, which we discussed in Chapter 4 as one of the major reactions of innate

Fig. 10.12 Functions of Th17 cells. Cytokines produced by Th17 cells stimulate local production of chemokines that recruit neutrophils and other leukocytes, increase production of antimicrobial peptides (defensins), and promote epithelial barrier functions. APC, Antigen-presenting cell; CSF, colony-stimulating factor; IL, interleukin; TNF, tumor necrosis factor.


immunity. When Th17 cells are activated, these reactions are greater in magnitude and more prolonged than what is seen in innate immunity when T cells are not involved.

IL-17 has several important functions in host defense.

- **IL-17 induces neutrophil-rich inflammation.** It stimulates the production of chemokines, such as IL-8, and other cytokines, such as TNF, that recruit neutrophils and, to a lesser extent, monocytes to the site of T-cell activation. IL-17 also enhances neutrophil generation by increasing the production of granulocyte colony-stimulating factor (G-CSF) and the expression of its receptors. Recruited neutrophils ingest and destroy bacteria and fungi.
- **IL-17 stimulates the production of antimicrobial substances,** including defensins, from numerous cell types (see Chapter 4).

Other Th17 Cytokines

IL-22 is a member of the type II cytokine family. It is produced by activated T cells, particularly Th17 cells, and by some NK cells and ILCs. The IL-22 receptor is a heterodimer in which

Fig. 20.5 Biochemical events of mast cell activation. Cross-linking of bound IgE by antigen promotes LYN phosphorylation of other signaling molecules, which leads to activation of protein tyrosine kinase SYK, which in turn causes activation of a mitogen-activated protein (MAP) kinase cascade and phospholipase C γ (PLC γ). PLC γ catalyzes the release of inositol trisphosphate (IP3) and diacylglycerol (DAG) from membrane phosphatidylinositol 4,5-bisphosphate (PIP2). IP3 causes the release of intracellular calcium from the endoplasmic reticulum. Calcium and DAG activate protein kinase C (PKC). FYN phosphorylation of GAB2 leads to PI3K activation, which contributes to PKC activation. Calcium, MAP kinases, and PKC promote cytokine gene transcription, leading to secretion of cytokines. PKC and calcium also enhance granule exocytosis, releasing histamine and other preformed mediators. Calcium and MAP kinases combine to activate the enzyme cytosolic phospholipase A $_2$ (PLA $_2$), which initiates the synthesis of lipid mediators, including prostaglandin D $_2$ (PGD $_2$) and leukotriene C $_4$ (LTC $_4$). TNF, tumor necrosis factor.

also contributes to the generation of Ca $^{++}$ and PKC signals. These signaling events lead to the three major responses:

- **Degranulation.** Activated PKC phosphorylates the myosin light-chain component of actin-myosin complexes located beneath the plasma membrane, leading to disassembly of the complex. This allows cytoplasmic granules to come in contact with the plasma membrane. The mast cell granule membrane then fuses with the plasma membrane, a process that is mediated by members of the SNARE protein family, which are involved in many other membrane fusion

events. Different SNARE proteins present on the granule membranes and plasma membranes interact to form a multimeric complex that catalyzes fusion. The formation of SNARE complexes is regulated by several accessory molecules, including RAB3 guanosine triphosphatases and RAB-associated kinases and phosphatases. In resting mast cells, these enzymes inhibit mast cell granule membrane fusion with the plasma membrane. On FcεRI cross-linking, the resulting increase in cytoplasmic calcium concentrations and the activation of PKC block the activity of the inhibitory