

MERRILL'S ATLAS OF

RADIOGRAPHIC

POSITIONING

& PROCEDURES

SIXTEENTH EDITION | VOLUME ONE

MERRILL'S ATLAS OF RADIOGRAPHIC POSITIONING & PROCEDURES

Jeannean Hall Rollins, MRC, BSRT(R)(CV)(M)

Associate Professor

Medical Imaging and Radiation Sciences Department
Arkansas State University
Jonesboro, Arkansas

Tammy Curtis, PhD, RT(R)(CT)(CHES)

Professor and Program Director
Radiologic Sciences and School of Allied Health
Northwestern State University
Shreveport, Louisiana

ELSEVIER

Elsevier
3251 Riverport Lane
St. Louis, Missouri 63043

MERRILL'S ATLAS OF RADIOGRAPHIC POSITIONING
AND PROCEDURES, SIXTEENTH EDITION

Set ISBN: 978-0-443-12041-1
Volume 1: 978-0-443-11717-6
Volume 2: 978-0-443-11689-6
Volume 3: 978-0-443-11690-2

**Copyright © 2026 by Elsevier Inc. All rights are reserved, including those
for text and data mining, AI training, and similar technologies.**

Publisher's note: Elsevier takes a neutral position with respect to territorial disputes or jurisdictional claims in its published content, including in maps and institutional affiliations.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notice

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds or experiments described herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made. To the fullest extent of the law, no responsibility is assumed by Elsevier, authors, editors or contributors for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Previous editions copyrighted 2023, 2019, 2016, 2012, 2007, 2003, 1999, 1995, 1991, 1986, 1982, 1975, 1967, 1959, and 1949.

Content Strategist: Margaret Benson, Luke Held
Senior Content Development Specialist: Rae Robertson
Publishing Services Manager: Julie Eddy
Senior Project Manager: Cindy Thoms
Design Direction: Brian Salisbury

Printed in Poland

Last digit is the print number: 9 8 7 6 5 4 3 2 1

Working together
to grow libraries in
developing countries

www.elsevier.com • www.bookaid.org

CONTENTS

VOLUME ONE

1 Preliminary Steps In Radiography, 1	4 Abdomen, 125	9 Vertebral Column, 409
2 General Anatomy and Radiographic Positioning Terminology, 45	5 Upper Extremity, 141	10 Bony Thorax, 495
3 Thoracic Viscera: Chest and Upper Airway, 81	6 Shoulder Girdle, 217	Addendum A: Summary of Abbreviations, 527
	7 Lower Extremity, 267	
	8 Pelvis and Hip, 369	

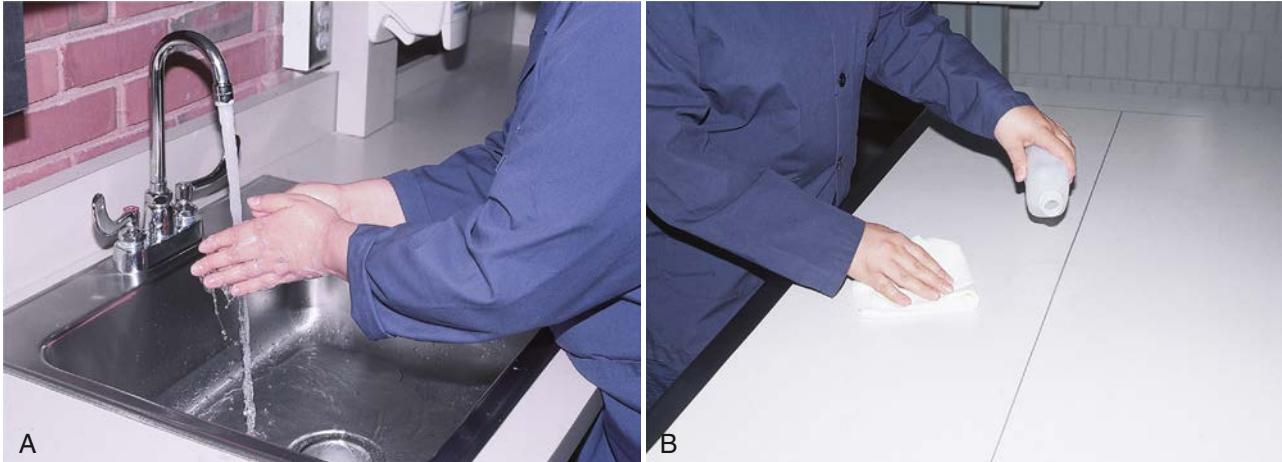
VOLUME TWO

11 Cranium, 1	15 Digestive System: Salivary Glands, Alimentary Canal, and Biliary System, 169	18 Mammography, 347 <i>Haneen Zeidan</i>
12 Trauma Radiography, 103	16 Urinary System and Venipuncture, 273	19 Bone Densitometry, 455 <i>Kristen E. Harper</i>
13 Contrast Arthrography, 141	17 Reproductive System, 327	Addendum B: Summary of Abbreviations, 495
14 Myelography and Other Central Nervous System Imaging, 151		
<i>Rebecca H. Keith</i>		

VOLUME THREE

20 Mobile Radiography, 1 <i>Richard E. Bass</i>	25 Computed Tomography, 227 <i>Megan Wedgeworth</i>	28 Diagnostic Medical Sonography, 407 <i>Susanna L. Ovel</i>
21 Surgical Radiography, 29 <i>J. Tyler Carter; Garrett Johnson</i>	26 Magnetic Resonance Imaging, 269 <i>Elizabeth Nelson</i>	29 Nuclear Medicine and Molecular Imaging, 435 <i>Raymond J. Johnson</i>
22 Pediatric Imaging, 71 <i>Derek Carver</i>	27 Vascular, Cardiac, and Interventional Radiography, 311 <i>Jessica Cooper; Richard Ryan Wall</i>	30 Radiation Oncology, 481 <i>Machele D. Michels</i>
23 Geriatric Radiography, 147 <i>Cheryl Morgan-Duncan</i>		
24 Sectional Anatomy for Radiographers, 171 <i>Rex T. Christensen</i>		

Control of Pathogen Contamination


For the protection of health care workers and patients, the US Centers for Disease Control and Prevention (CDC) provides directives for infection control. The foundation of infection control practices is included in the Standard Precautions for All Patient Care. “They’re based on a risk assessment and make use of common-sense practices and personal protective equipment (PPE) use that protect health

care providers from infection and prevent the spread of infection from patient to patient.”⁴ Standard precautions include the following aspects of professional practice:

- Perform hand hygiene (Fig. 1.2A).
- Use PPE whenever there is an expectation of possible exposure to infectious material (Box 1.1).
- Follow respiratory hygiene/cough etiquette principles.
- Ensure appropriate patient placement.
- Properly handle, clean, and disinfect patient care equipment and instruments/

devices; clean and disinfect the environment appropriately (see Fig. 1.2B).

- Handle textiles and laundry carefully.
- Follow safe injection practices; wear a surgical mask when performing lumbar punctures.
- Ensure health care worker safety, including proper handling of needles and other sharps (Fig. 1.3).
- Transmission-based precautions are used in addition to standard precautions for patients with known or suspected infections.

Fig. 1.2 (A) Radiographers should practice scrupulous cleanliness, which includes regular handwashing. (B) Radiographic tables and equipment should be cleaned with a disinfectant according to department policy.

BOX 1.1

Body fluids that may contain pathogenic microorganisms

Blood
Any fluid containing blood
Amniotic fluid
Pericardial fluid
Pleural fluid
Synovial fluid
Cerebrospinal fluid
Seminal fluid
Vaginal fluid
Urine
Sputum

Fig. 1.3 All needles should be discarded in puncture-resistant containers.

Male Mammography

EPIDEMIOLOGY OF MALE BREAST DISEASE

In the United States, more than 2400 men develop invasive breast cancer every year, and nearly 20% of these men die of the disease.¹ Although most men who develop breast cancer are 60 years of age and older, juvenile cases have been reported. Nearly all male breast cancers are primary tumors. An estimated 4% to 40% of male breast cancers are due to inherited mutations. Men typically have significantly less breast tissue, and screening mammograms typically are not performed for male patients; therefore, most male breast cancers are diagnosed as palpable lumps and are more likely to be diagnosed at advanced stages. The overall 5-year survival rate for male breast cancer is 84%, compared to 90% in women, which reflects this fact.²⁶ Other symptoms of breast cancer in men include nipple retraction, crusting, discharge, and ulceration.

Gynecomastia, a benign excessive development of the male mammary gland, can make malignant breast lesions more elusive to palpation. Gynecomastia occurs in 40% of male breast cancer patients; however, a histologic relationship between gynecomastia and male breast cancer has not been definitively established. Because gynecomastia is caused by a hormonal imbalance, it is believed that abnormal hormonal function may increase the risk of male breast cancer in these patients.²⁷ Other associated risk factors for male breast cancer include increasing age, positive family history, *BRCA1* and *BRCA2* gene mutations, and Klinefelter syndrome.²⁸

Breast cancer treatment options are limited among male patients. Because men have less breast tissue, lumpectomy is not considered practical. Most of the male glandular tissue is located directly posterior to the nipple. Therefore a modified radical mastectomy, including dissection of the nipple, is usually the preferred surgical procedure.^{29–31} Radiation and systemic therapy are considered when the tumor is located near the chest wall or when indicated by lymph node analysis. Similar to female breast cancer, the prognosis for male breast cancer is directly related to the stage of the disease at diagnosis. An early diagnosis indicates a better chance

of survival. Survival rates among male patients with localized breast carcinomas are positive: 98% survive for 5 years.²⁶

Routine Projections of the Male Breast

Male breast anatomy varies significantly from female breast anatomy. The pectoral muscle is more highly developed in men, and most of the glandular breast tissue is located directly posterior to the

nipple. The radiographer must take this variance into consideration. The standard CC and MLO projections may be applied with success in most male patients (Figs. 18.38–18.40). For men (or women) with large pectoral muscles, the radiographer may perform the caudocranial (FB) projection instead of the standard CC because it may be easier to compress the inferior portion of the breast. In addition, the lateromedial oblique (LMO) projection may replace the standard MLO.

Fig. 18.38 Positioning for CC projection of male breast.

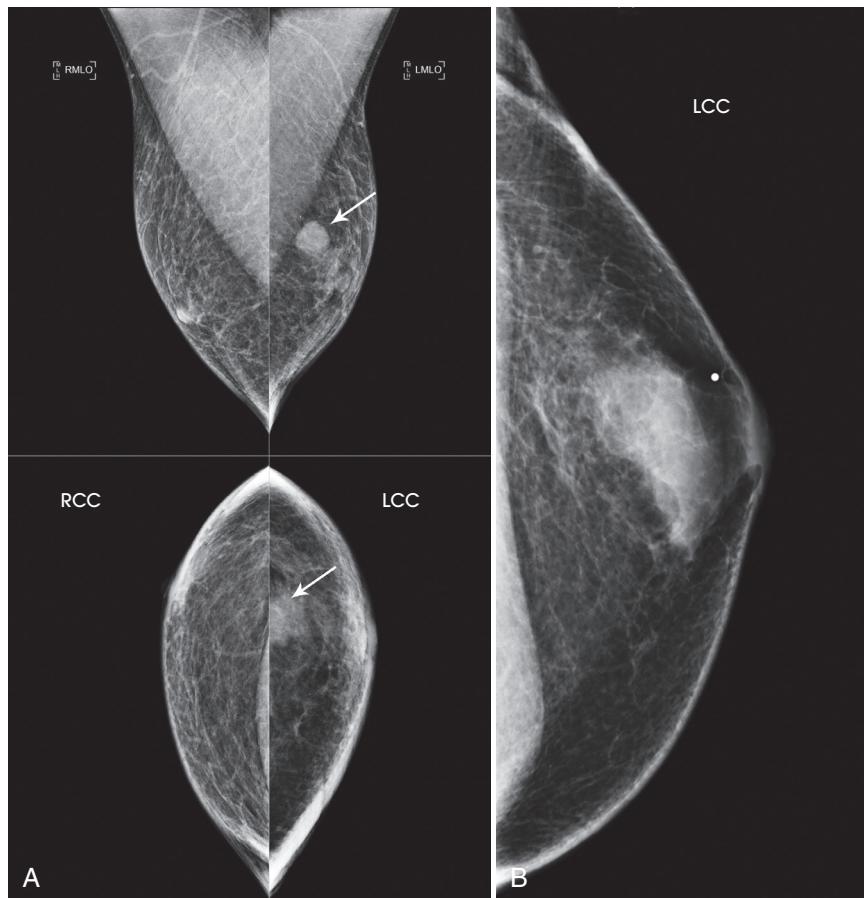
Fig. 18.39 Positioning for MLO projections of male breast.

Keep in mind that these unconventional views are rarely necessary but are viable alternatives in extreme cases. These projections may allow the radiographer to accommodate more successfully a patient with prominent pectoral muscles. Some facilities also use narrower quadrant compression paddles (8 cm [3 inches] wide) to compress the male breast or the extremely small female breast.³² The smaller paddle permits the radiographer to hold the breast in position while applying final compression. A wooden spoon or a plastic spatula can be used to hold the breast in place, then can be slowly removed as the compression paddle replaces it.

Because most men who undergo mammography present with outward symptoms, mammography of the male breast is usually considered a diagnostic examination. It can be considered a screening

examination for men who know they carry the *BRCA1* or *BRCA2* gene, or who have a history of breast cancer. The radiographer should work closely with the radiologist to achieve a thorough demonstration of the potential abnormality. In the male breast, most tumors are located in the subareolar region. Careful attention should be given to positioning the nipple in profile and to providing adequate compression of this area to allow the best visualization of this tissue.

Calcifications are rare in male breast cancer cases. When present, they are usually larger, rounder, and more scattered than the calcifications associated with female breast cancer. Spot compression and the magnification technique are common image enhancement methods for showing the morphology of calcifications.


Procedures other than mammography are used to diagnose male breast cancer.

FNAB and excisional biopsy of palpable lesions are standard methods of diagnosis. Histologically, most breast cancers in men are ductal, and most are infiltrating ductal carcinomas. Very few *in situ* cancers are found in male patients.

Because breast cancer is traditionally considered a “woman’s disease,” the radiographer should remain sensitive to the feelings of the male patient by offering not only physical comfort but also psychological and emotional support during the procedure.

Image Enhancement Methods

The spot compression technique and the magnification technique are designed to enhance the image of the area under investigation.

Fig. 18.40 (A) Four-view mammogram of a 55-year-old man with a new palpable lump (arrow). This proved to be cancer on biopsy. (B) Left CC view of a 49-year-old male with a new lump. This proved to be gynecomastia, a benign process, on biopsy.

Epiphyseal artery, **1:57, 1:57f**
 Epiphyseal line, **1:56f–57f, 1:58**
 Epiphyseal plate, **1:57f–58f, 1:58, 1:61f**
 Epiphysis, **1:57f–58f, 1:58**
 slipped, **1:379f**
 Epithelial tissues, cancer arising from, **3:485, 3:485t, 3:509**
 Equipment room, for MRI, **3:273**
 ERCP. *See* Endoscopic retrograde cholangiopancreatography
 Ergometer, **3:403**
 Erythema, due to radiation, **3:483**
 Esophageal hiatus, **2:176, 2:177f**
 Esophageal stricture, **2:211, 2:211f**
 Esophageal varices, **2:190t–191t**
 Esophagogastric junction, **2:176**
 Esophagus
 abdominal, **2:176, 2:177f**
 anatomy of, **1:87f–88f, 1:90, 1:90f, 1:110f, 2:171, 2:171f, 2:175f, 2:176, 2:177f, 2:184f**
 AP oblique projection of, **2:210, 2:210f**
 AP projection of, **2:208f, 2:210–211, 2:211f**
 Barrett, **2:190t–191t**
 cervical, **2:176, 2:177f**
 contrast media studies of, **2:207–209, 2:207f**
 barium administration and respiration for, **2:211, 2:211f**
 barium sulfate mixture for, **2:207**
 double-contrast, **2:207, 2:209, 2:209f**
 examination procedures for, **2:208–209, 2:208f–209f**
 single-contrast, **2:207, 2:208f–209f**
 exposure time for, **2:206**
 lateral projection of, **2:208f, 2:210–211**
 oblique projections of, **2:211**
 opaque foreign bodies in, **2:209, 2:209f**
 PA projection of, **2:208f, 2:210–211, 2:211f**
 sectional anatomy of, **3:205**
 thoracic, **2:176, 2:177f**
 Estrogen, for osteoporosis, **2:462t**
 Ethics, **1:2–3**
 Ethmoid bone
 anatomy of, **2:3f–5f, 2:8, 2:8f–9f**
 in orbit, **2:21, 2:21f**
 sectional anatomy of, **3:174**
 Ethmoidal air cells, **2:7f, 2:8, 2:22f**
 submentovertical projection of, **2:49f**
 Ethmoidal notch, **2:7, 2:7f**
 Ethmoidal sinuses, **2:8, 2:8f, 2:22f–23f, 2:23**
 CT of, **2:8f**
 lateral projection of, **2:93f**
 PA axial projection of (Caldwell method), **2:38f, 2:67f, 2:94–95, 2:94f–95f, 2:95b**
 parietoacanthial projection of, **2:97f**
 sectional anatomy of, **3:174, 3:183, 3:187f**
 submentovertical projection of, **2:100–101, 2:100f–101f, 2:101b**
 Etiology, **3:509**
 Eustachian tube, **2:16, 2:17f**
 Evacuation proctography, **2:262, 2:262f**
 Evert/eversion, **1:78, 1:78f**
 Ewing sarcoma, **1:151t, 1:282t**
 in children, **3:137, 3:137f**
 ExacTrac system, **3:499**
 Exaggerated craniocaudal projection, **2:417–418, 2:417f**
 labeling codes for, **2:385t–390t**
 Excretory cystography
 AP axial projection for, **2:309f**
 AP oblique projection for, **2:311f**
 Excretory system, **2:275**
 Excretory urography (EU), **2:283, 2:283f**
 contrast media for, **2:286, 2:287f**
 equipment for, **2:290**
 radiation protection for, **2:293**
 radiographic procedure for, **2:294–295, 2:294f–295f**
 ureteral compression for, **2:292, 2:292f**
 Exercise
 for older adults, **3:153**
 weight-bearing, for osteoporosis, **2:464**
 Exostosis, **1:282t**
 Expiration, **1:14, 1:501**
 Explosive trauma, **2:105**
 Exposure factors
 or obese patients, **1:42–44**
 for trauma radiography, **2:109, 2:109f**

Exposure techniques
 adaptation to patients, **1:20**
 anatomic programmers in, **1:20, 1:22f**
 charts of, **1:20, 1:21f**
 foundation, **1:20**
 Exposure time, **1:18**
 for gastrointestinal radiography, **2:206**
 Extension, **1:78, 1:78f**
 External, definition of, **1:65**
 External acoustic meatus, **2:4f, 2:17f, 2:19f**
 axiolateral oblique projection of, **2:88f**
 as lateral landmark, **2:29f**
 lateral projection of, **2:35f–36f, 2:59f**
 sectional anatomy of, **3:189f**
 sphenoid bone and, **2:10–11**
 temporal bone, **2:14f–15f, 2:17f**
 External auditory canal, **2:15f, 2:16, 3:184, 3:185f**
 External-beam therapy, **3:487, 3:509**
 External iliac arteries, **3:317**
 sectional anatomy of, **3:206, 3:215–216, 3:215f–216f**
 External oblique muscle, sectional anatomy of, on axial plane
 at level B, **3:207, 3:208f**
 at level C, **3:209f**
 at level D, **3:210f**
 at level E, **3:212**
 at level G, **3:213**
 at level I, **3:215**
 External occipital protuberance, **2:4f, 2:12, 2:12f–13f**
 sectional anatomy of, **3:174**
 External radiation detector, **3:478**
 Extravasation, **2:324, 3:327, 3:403**
 in CT, **3:266**
 Extremity
 mobile radiography procedures, in operating room, **3:61–64, 3:64b**
 for ankle fracture, **3:61f**
 for ankle with antibiotic beads, **3:62f**
 for fifth metatarsal nonhealing fracture, **3:63f**
 for forearm fracture, **3:62f**
 for hip joint replacement, **3:61f**
 for tibial plateau fracture, **3:62f**
 for total shoulder arthroplasty, **3:63f**
 for wrist, **3:64f**
 MRI scanner, **3:275, 3:275f**
 Extremity magnets, **3:278, 3:278f**
 Eye
 acanthioparietal projection of, **2:65f**
 lateral projection of, **2:55, 2:55b, 2:55f**
 localization of foreign bodies within, **2:54–57, 2:54f**
 PA axial projection of, **2:55b–56b, 2:56, 2:56f**
 parietoacanthial projection (modified Waters method), **2:57, 2:57b, 2:57f**
 preliminary examination of, **2:54**
 radiography of, **2:52–53, 2:53f**
 Eyeball, **2:52, 2:53f**

F

Fabella, of femur, **1:275**
 Facet(s), **1:64, 1:413**
 Facial bones, **2:3, 2:18–21, 2:18f–19f**
 acanthioparietal projection of
 alternative, **2:65, 2:65f**
 reverse Waters method, **2:64, 2:64b, 2:64f–65f**
 hyoid bone as, **2:3, 2:21, 2:21f**
 inferior nasal conchae as, **2:18f, 2:19**
 lacrimal bones as, **2:18, 2:18f–19f**
 lateral projection of, **2:58–67, 2:58f–59f, 2:59b**
 mandible as, **2:18f, 2:20, 2:20f**
 axiolateral and axiolateral oblique projection of, **2:79–82, 2:79b, 2:79f–81f, 2:81b**
 PA axial projection of body of, **2:78, 2:78b, 2:78f**
 PA axial projection of rami of, **2:76, 2:76b, 2:76f, 2:78f**
 PA projection of body of, **2:77–78, 2:77b, 2:77f**
 PA projection of rami of, **2:75, 2:75b, 2:75f, 2:77f**
 panoramic tomography of, **2:89, 2:89f**
 submentovertical projection of, **2:101f**
 maxillary bones as, **2:18**
 modified parietoacanthial projection of (modified Waters method), **2:62, 2:62f–63f**
 nasal bones as, **2:5f, 2:18**
 lateral projection of, **2:68, 2:68f–69f, 2:69b**
 orbits as, **2:21, 2:21f**
 acanthioparietal projection of, **2:65f**

Facial bones (*Continued*)
 lateral projection of, **2:55, 2:55b, 2:55f**
 PA axial projection of, **2:55b–56b, 2:56, 2:56f**
 parietoacanthial projection (modified Waters method), **2:57, 2:57b, 2:57f**
 preliminary examination of, **2:54**
 PA axial projection of (Caldwell method), **2:66, 2:66f–67f, 2:67b**
 palatine bones as, **2:5f, 2:19**
 parietoacanthial projection of (Waters method), **2:60, 2:60b, 2:60f–61f**
 vomer as, **2:5f, 2:18f, 2:19**
 submentovertical projection of, **2:101f**
 zygomatic bones as, **2:19**
 modified parietoacanthial projection of, **2:63f**
 Facial trauma, acanthioparietal projection (reverse Waters method) for, **2:132, 2:132f**
 Falciiform ligament, anatomy of, **2:184, 2:185f**
 Fall(s), osteoporosis and, **2:463, 2:463f**
 Fallopian tubes
 anatomy of, **2:329, 2:329f–330f**
 hydrosalpinx of, **2:336f**
 hysterosalpingography of, **2:336–337, 2:336f–337f, 2:337b**
 sectional anatomy of, **3:206**
 False ribs, **1:498**
 Falx cerebri, **3:178–179**
 anatomy of, **2:153**
 defined, **2:167**
 sectional anatomy of, **3:175**
 on axial plane, **3:178f**
 on coronal plane, **3:189f**
 Familial adenomatous polyposis, colon cancer and, **3:485**
 Familial cancer research, **3:485**
 Family education, for older adults, **3:161**
 Faraday cages, **3:275**
 Faraday's law of induction, **3:271**
 Fat necrosis, **2:376–377f**
 Fat pads, of elbow, **1:149, 1:149f**
 Fat suppression, **3:306**
 Female contraceptive devices, **2:338, 2:338f–339f**
 Female cystourethrogram, **2:314, 2:314f**
 Female pelvis
 anatomy of, **1:376, 1:376f, 1:376f**
 AP projection of, **1:382f**
 transabdominal ultrasonography of, **3:423–424, 3:423f**
 Female reproductive system, **2:329–333**
 anatomy of
 fetal development in, **2:331, 2:331f**
 ovaries in, **2:329, 2:329f–330f**
 summary of, **2:334b**
 uterine tubes in, **2:329, 2:329f**
 uterus in, **2:330, 2:330f**
 vagina in, **2:330**
 radiography of, **2:336–345**
 for imaging of female contraceptive devices, **2:338, 2:338f–339f**
 in nonpregnant patient, **2:336–341**
 appointment date and care of patient for, **2:336**
 contrast media for, **2:336**
 hysterosalpingography for, **2:336–337, 2:336f–337f, 2:337b**
 pelvic pneumography for, **2:336, 2:340, 2:340f**
 preparation of intestinal tract for, **2:336**
 radiation protection for, **2:336**
 vaginography for, **2:336, 2:340–341, 2:340f–341f, 2:341b**
 in pregnant patient, **2:342**
 fetography for, **2:342, 2:342f**
 pelvimetry for, **2:342**
 placentography for, **2:342**
 radiation protection for, **2:342**
 sectional anatomy of, **3:206**
 Femoral arteries, sectional anatomy of, **3:206**
 Femoral arteriogram, **3:54b, 3:55–56, 3:55f–56f, 3:56b**
 Femoral head
 accurate localization of, **1:377**
 anatomy of, **1:372f, 1:373, 1:382f, 1:385f**
 sectional anatomy of, **3:217–218, 3:217f**
 Femoral neck
 accurate localization of, **1:377**
 anatomy of, **1:372f, 1:373**
 angulation of, **1:374, 1:374f**
 AP oblique projection of, **1:386–389**
 bilateral, **1:386, 1:386f**
 evaluation criteria for, **1:387b**