

OH'S INTENSIVE CARE MANUAL

OH'S INTENSIVE CARE MANUAL

NINTH EDITION

Editors

Jonathan M. Handy BSc, MBBS, FRCA, EDIC, FFICM, RCPPathME

Consultant of Intensive Care Medicine and Anaesthesia
Royal Marsden Hospital;
Honorary Senior Lecturer
Imperial College London
London, United Kingdom

Bala Venkatesh MBBS, MD(Int.Med), FRCA, FFARCSI, MD(UK),

FCIM, FAHMS

Academic Professor, Gold Coast University Hospital

Program Director, Critical Care, The George Institute for Global Health

Professor of Intensive Care, University of QLD

Honorary Professor, University of New South Wales

Associate Editors

Jeremy Cohen BSc, MBBS, MRCP, FRCA, FCIM, PhD

Associate Professor, Intensive Care, Wesley Hospital, Brisbane, QLD

Associate Professor, Intensive Care, Royal Brisbane and Women's Hospital, Brisbane, QLD

Honorary Professorial Fellow, The George Institute for Global Health

Adjunct Associate Professor, University of New South Wales

Daniel Martin OBE, BSc, MBChB, FRCA, FFICM, PhD

Professor of Perioperative and Intensive Care Medicine

Peninsula Medical School, University of Plymouth

Plymouth, Devon, United Kingdom

Consultant of Intensive Care Medicine, University Hospitals Plymouth, Devon, United Kingdom

Copyright © 2026, Elsevier Inc. All rights reserved, including those for text and data mining, AI training, and similar technologies.

For accessibility purposes, images in electronic versions of this book are accompanied by alt-text descriptions provided by Elsevier. For more information, see <https://www.elsevier.com/about/accessibility>.

Books and Journals published by Elsevier comply with applicable product safety requirements. For any product safety concerns or queries, please contact our authorised representative, Elsevier B.V., at productsafety@elsevier.com

Publisher's note: Elsevier takes a neutral position with respect to territorial disputes or jurisdictional claims in its published content, including in maps and institutional affiliations.

Previous editions copyrighted 2019, 2014, 2009, 2003, 1991, 1990, 1985, and 1979.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notice

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds or experiments described herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made. To the fullest extent of the law, no responsibility is assumed by Elsevier, authors, editors or contributors for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

ISBN 978-0-443116117

Printed in India

Last digit is the print number: 9 8 7 6 5 4 3 2 1

Executive Content Strategist: Charlotta Kryhl

Content Development Specialist: Teddy Lewis

Project Manager: Nandhini Thanga Alagu

Design: Patrick Ferguson

Marketing Manager: Mary McCabe-Dunn

Working together
to grow libraries in
developing countries

www.elsevier.com • www.bookaid.org

Contents

List of Contributors v
Preface xvii
Acknowledgements xviii

Part One - Structure and Process

- 1 Design and organisation of intensive care units 3
Peter Kruger, Nhi Nguyen
- 2 Rapid response systems: care of critically ill patients outside of critical care 10
John Robert Welch, Christian Peter Subbe
- 3 Critical care nursing 16
John Robert Welch
- 4 Allied health professionals in ICU 24
Ella Terblanche, Jackie McRae, Sarah Dzumbira, Paul Twose
- 5 Team-based healthcare delivery 30
Laura Vincent, Gerry O'Callaghan
- 6 Pandemic and major incident planning 41
James O'Carroll, S. Ramani Moonesinghe
- 7 Transport of critically ill patients 48
Roy Fischer, Krista Mos
- 8 Common problems after ICU 60
Andrew Slack, Kate Tantam, Joel Meyer

Part Two - Decision Making

- 9 Clinical assessment of the critically ill patient 69
Jeremy Cohen, Mary Pinder, Bala Venkatesh
- 10 Severity scoring and outcome prediction 75
C Jake Barlow, David Pilcher
- 11 Trials 89
Simon Finfer, Lennie P.G. Derde, Naomi E. Hammond, Anthony Delaney

- 12 **Ethics** 99
Victoria Metaxa
- 13 **Treatment limitation and palliative care** 103
Sarah Cox, Phoebe Wright
- 14 **The determination of death in ICU** 109
Ian Thomas, Stewart Moodie

Part Three - Sepsis and Infections Requiring ICU Support

- 15 **Sepsis and septic shock** 119
Jonathan Edward Millar, Manu Shankar-Hari
- 16 **Multi-organ dysfunction syndrome** 127
Matthew J. Maiden, Sarah C. Sasson
- 17 **Genetics in sepsis** 137
Jeremy Cohen, David Evans, Bala Venkatesh
- 18 **Healthcare-associated infection** 144
Stuart Dickson
- 19 **Fungal infection** 151
Alastair Craig Carr
- 20 **Principles of antimicrobial use in the intensive care unit** 162
Marta Ulldemolins, Jason A. Roberts, Jeffrey Lipman
- 21 **Tropical infections** 169
Binila Chacko I, Sarah Elizabeth Crawfurd Platt, Steven Tong, Duong Ha Thi Hai, Bharath Kumar Tirupakuzhi Vijayaraghavan
- 22 **Severe soft-tissue infections** 182
Paul B. Bartley, Carl Joseph Lisec

Part Four - Cardiovascular Intensive Care

- 23 **Overview of shock** 191
Matthew J. Maiden, Emily J. See, Sandra L. Peake
- 24 **Haemodynamic monitoring** 198
Denzil Gill, Christopher Peter Nickson, Kevin Pathmanathan, Sarah Wesley
- 25 **Echocardiography in intensive care** 219
James Richards Anstey, Craig George Terrell Morris, Ubbo F. Wiersema
- 26 **Inotropes and vasopressors (vasoactive drugs)** 232
Adam M. Deane, Ashish K. Khanna, John Myburgh

27 **Vasodilators and antihypertensives** 241
David O'Callaghan, David Benjamin Antcliffe

28 **Mechanical cardiac supports** 253
Vince Pellegrino, Julia Coull, Brooke Riley

29 **Acute coronary syndromes, investigations and interventions** 263
Shanthosh Sivapathan, Faraz Pathan, Ian Seppelt

30 **Cardiopulmonary resuscitation (including defibrillation)** 289
Peter Thomas Morley, Jerry P. Nolan

31 **Cardiac arrhythmias** 298
Andrew Holt, Russell David Laver

32 **Cardiac pacing** 366
Francisca Caetano, Brijesh Vipinchandra Patel

33 **Acute heart failure and pulmonary hypertension** 378
Daniel Taylor, Nicholas Ioannou

34 **Valvular and congenital heart disease and infective endocarditis** 398
Steven Galluccio, Lisa-Marie Pereira

35 **Acute aortic syndrome** 415
Clare Quarterman

Part Five - Respiratory Failure

36 **Overview of respiratory failure in ICU** 433
Shailesh Bihari, Andrew Bersten

37 **Acute respiratory distress syndrome** 442
Andrew Bersten, Shailesh Bihari

38 **Respiratory monitoring** 455
Andrew Bersten, Thomas J. Morgan

39 **Troubleshooting mechanical ventilation waveforms** 473
David V. Tuxen, Paul Nixon

40 **Chest imaging and ultrasound in the ICU** 483
Bhavin Rawal, Ubbo F. Wiersma

41 **Oxygen therapy, humidifiers and inhalation therapy** 502
Shailesh Bihari, Steven Galluccio, Andrew Bersten

42 **Mechanical ventilator support** 518
Andrew Bersten, Shailesh Bihari

43 **Non-invasive ventilation** 533
Graeme Duke, Andrew Bersten

44 Airway management and acute airway obstruction 540
Gordon YS Choi, Gavin Matthew Joynt

45 Pulmonary embolism 554
Aimee Brame, Brijesh Vipinchandra Patel

46 Acute severe asthma 564
David V. Tuxen, Mark Hew, Eve Denton

47 Acute respiratory failure in chronic obstructive pulmonary disease 578
Matthew T. Naughton, David V. Tuxen

48 Pneumonia 589
Wai Tat WONG, Eunise WS Ho, Lowell Ling

49 COVID-19 605
Hugh Montgomery, Simon Stallworthy, Sampath Weerakkody

50 Extracorporeal membrane oxygenation for respiratory failure 614
Vince Pellegrino, Brooke Riley, Julia Coull

Part Six - Gastroenterological Emergencies and Surgery

51 Enteral and parenteral nutrition 623
Yasmine Ali Abdelhamid, Marianne Chapman, Adam M. Deane

52 Acute gastrointestinal bleeding 630
Sheng Qiu, Constantinos Simillis, Shahnawaz Rasheed

53 Acute pancreatitis 642
Aimee Brame

54 Hepatic failure 648
Freya Glover, Rohit Saha, Brian J. Hogan

Part Seven - Acute Renal Failure

55 Acute kidney injury 671
Emily J. See, Rinaldo Bellomo

56 Renal replacement therapy 677
Emily J. See, Rinaldo Bellomo

57 Acid-base disorders and hyperlactataemia 684
David Story, Thomas J. Morgan, David J. Cooper

58 Fluid and electrolyte therapy 696
Anthony Delaney, Priya Nair, Naomi E. Hammond, Simon Finfer, John Myburgh

Part Eight - Neurological Disorders

59 Disorders of consciousness 715
Xiuxian Pham, Toby Jeffcote, Andrew Udy

60 Cerebral protection 729
Colin Andrew Eynon

61 Status epilepticus 736
Lara Prisco, Mario Ganau, Arjune Sen

62 Acute cerebrovascular complications 749
Thearina de Beer

63 Meningitis and encephalomyelitis 761
Michel Toledano, Nicholas WS Davies

64 Neuromonitoring 772
Toby Jeffcote, Xiuxian Pham, Andrew Udy

65 Delirium 783
Edward John Richard Watson, Michael Charles Reade, Marcela Paola Vizcaychipi

66 ICU-acquired weakness 790
Zudin Puthucheary, Carol L. Hodgson

67 Neuromuscular disorders 801
Manoj Krishan Saxena, Walid Matar

Part Nine - Endocrine Disorders

68 Diabetic emergencies and glucose control in the ICU 815
Mahesh Ramanan, Elif Ekinci

69 Polyuria in the ICU – diabetes insipidus and other causes 824
Alastair Craig Carr

70 Thyroid emergencies 838
Alex Li, Jonathan M. Handy

71 Adrenocortical insufficiency in critical illness 847
Jeremy Cohen, Bala Venkatesh

Part Ten - Surgical Patient

72 Preoperative assessment of the high-risk patient 857
James Francis Waiting, Mevan Gooneratne, Don Milliken

73 Postoperative cardiac intensive care 862
Nick Fletcher, Carlos Corredor

74 Post-operative thoracic surgical patient 872
Katrina Bramley

75 Management of the post-operative neurosurgical patient 879
Judith Bellapart, Rosalind L. Jeffree, Alan Coulthard

76 Postoperative care after major abdominal operations 885
Janet Liang, Ywain Thomas Lawrey

Part Eleven - Severe and Multiple Trauma

77 Severe and multiple injuries 899
Rebecca Schroll, Li C. Hsee

78 Severe head injuries 908
Mark Howard Wilson

79 Maxillofacial and upper-airway injuries 915
Jason Pincus, Alexander M. Bobinskas, Scott Charles Borgna

80 Chest injuries 922
Christopher Tobias Edmunds, Sarah McNeilly, Ubbo F. Wiersema

81 Spinal injuries 933
Oliver James Flower, Sumesh Arora

82 Abdominal and pelvic injuries 946
Sarah McNeilly

Part Twelve - Special Populations

83 Intensive care and the elderly 957
Linsey Emma Christie, Richard T. Keays

84 Obesity 967
Rob Bevan

85 The immunocompromised host 975
Alex Padiglione, Steven A. McGloughlin

86 Implications of solid tumours for intensive care 982
Timothy Wigmore, Pascale Gruber, Sef Carter

87 Māori, Aboriginal and Torres Strait Islander populations and critical illness: an overview 989
Paul Secombe, Alex Brown, Alex Browne

88 Pre-eclampsia, eclampsia and related disorders in pregnancy 997
Sadie Callahan, Josephine Gwyneth Laurie, Nai An Lai

89 Obstetric emergencies 1008
Loki Björn Johnk, Josephine Gwyneth Laurie, Nai An Lai

Part Thirteen - The Paediatric Patient

90 The critically ill child 1021
Andrew J. Jones

91 Upper airway obstruction in children 1027
Paul James, Michelle Alisio

92 Acute respiratory distress in children 1035
Tavey Dorofaeff, Mark Graeme Coulthard

93 Paediatric fluid and electrolyte therapy 1045
Sophie Skellett

94 Sedation and analgesia in children 1056
Andy Petros

95 Shock and cardiac disease in children 1066
Charles Larson

96 Neurological emergencies in children 1080
Nitesh Singhal, Michaela Waak

97 Paediatric trauma 1095
Kevin McCaffery

98 Paediatric treatment limitation and organ donation 1102
Sainath Raman, Helen Miles, Tina Anne Coco

99 Paediatric poisoning and envenomation 1109
Sainath Raman, Angela Burgett, Carol J. Wylie

100 Paediatric cardiopulmonary resuscitation 1119
Andrea S. Christoff, Gabrielle A. Nuthall

Part Fourteen - Environmental Injuries

101 Poisoning and drug intoxication 1129
Tamishta Hensman, Brendan R. Murfin, Nicholas A. Barrett

102 Submersion 1142
Andrew Semark, Alice Young, James P. McCullough

103 Burns 1146
Edward John Richard Watson, Marcela Paola Vizcaychipi

104 Thermal disorders 1153
Stephen William Lam, Lisa-Marie Pereira, Richard Strickland

105 Electrical safety and injuries 1168
Christina HY So, Christopher Pak-to Lee, Po Tong Chui

106 Envenomation 1180
Catherine L. Tacon, Mark Little, Christopher Peter Nickson

107 **Blast and ballistic trauma** 1191
Michael Charles Reade, Tom Woolley, Elissa Mary Milford

108 **Chemical, biological, radiological and nuclear exposure management** 1204
Andrew McDonald Johnston, Sophia L. De Maria

Part Fifteen - Inflammatory and Immune Disorders

109 **Anaphylaxis** 1217
Peter Rostron Platt, Paul Harold Martin Sadleir

110 **Therapeutic plasma exchange and intravenous immunoglobulin therapy** 1228
Alpesh Patel, Shailesh Bihari

111 **Rheumatology** 1239
Tamir Malley, Animesh Singh, Richard Stratton

Part Sixteen - Haematological Management

112 **Blood transfusion and patient blood management** 1253
Craig French, Zoe McQuilten, James Winearls

113 **Haemostatic failure** 1267
James Winearls, Zoe McQuilten, Charithani Bhagya Keragala

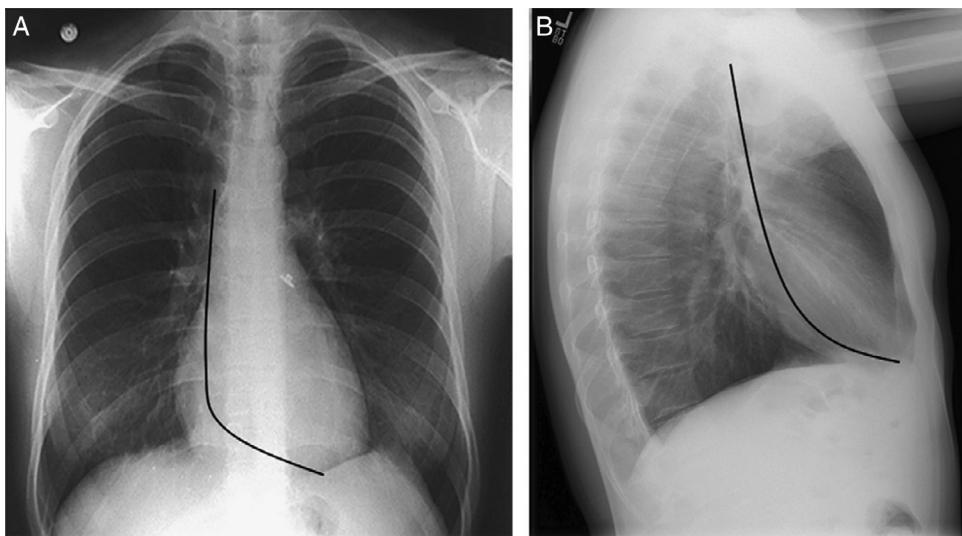
114 **Haematological malignancy** 1286
Pascale Gruber, Timothy Wigmore, Sef Carter

Part Seventeen - Transplantation

115 **Organ donation** 1299
Helen Ingrid Opdam, Daniel John Roberton Harvey

116 **Liver and kidney transplantation** 1310
Sujit Kumar Mukherjee, Brian J. Hogan, Andrew Slack, Chris Callaghan

117 **Heart transplantation** 1327
Priya Nair, Paul Jansz, Peter Macdonald


118 **Lung transplantation** 1336
Priya Nair, Stephen Morgan, Paul Jansz, Marshall Plit

Part Eighteen - Pharmacologic Considerations

119 **Pharmacokinetics, pharmacodynamics and drug monitoring in acute illness** 1349
Christine Chung, Jason A. Roberts

120 **Sedation and pain management in intensive care** 1356
Luke Torre, Elizabeth T. Tran

Index 1367

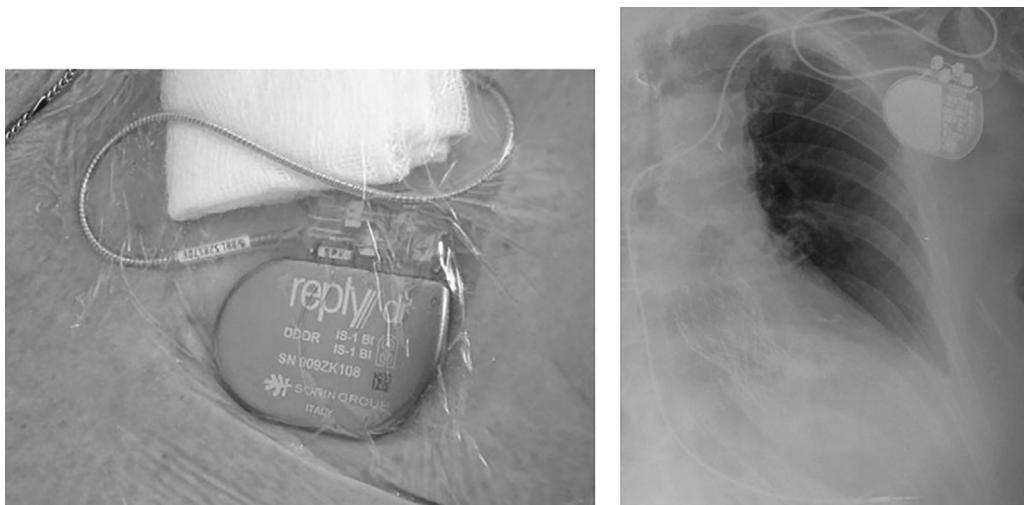
Fig. 32.6 Posteroanterior (A) and lateral (B) chest radiographs, with a line that diagrams the expected course of a right ventricular apical pacemaker lead. (Reproduced with permission from Belvin D, Hirsch D, Jain VR, et al. Chest radiographs are valuable in demonstrating clinically significant pacemaker complications that require reoperation. *Can Assoc Radiol J.* 2011;62(4):290, Figure 1. Copyright Elsevier.)

that will need long-term temporary transvenous pacing (e.g. due to concomitant infection), an active-fixation lead inserted through the skin and connected to an external pacemaker should be considered (the so-called 'temporary-permanent system' or 'externalised pacemaker')³⁸ (Fig. 32.7). After a short period of observation, the patient can be mobile and lead displacement and threshold rise are rare, meaning the need for the lead repositioning is also rare. The device can be reprogrammed just like any other permanent pacemaker, and the percentage of time that the patient is pacing, or detection of intermittent arrhythmias, can be recorded so where appropriate, a decision to permanently pace or provide other treatment can be made. If the patient does not need a permanent system, removal of the temporary-permanent system is straightforward.

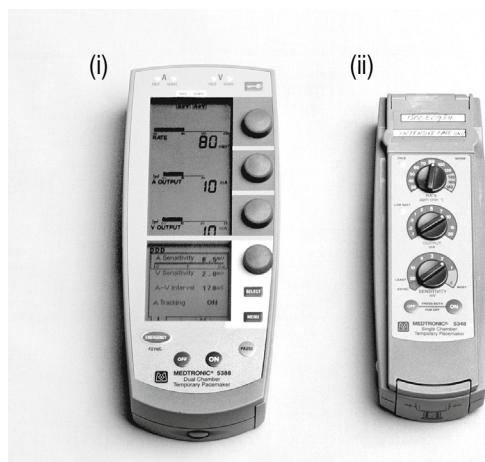
TESTING THE PACING LEADS

Modern external pacing boxes are available (Fig. 32.8) that will pace in all modes. These units are small, easy to use and can fit into a small pouch suitable for mobile patients. Furthermore, they can perform checks of pacing threshold and sensing.

- 1. Pacing threshold:** It is the minimum energy required to be delivered by the pacing system to achieve electrical capture.
- Set the pacemaker rate at least 10 beats per minute (bpm) faster than the intrinsic heart rate, or at 60 bpm if the patient has a profound bradycardia.


- Set the pacing output at 5 V.
- Confirm ventricular capture (pacing spike immediately followed by a broad QRS at the same rate as that set on the box).
- Decrease the output slowly until capture is lost (pacing spike no longer followed by a broad QRS). This is the pacing threshold and ideally should be less than 1 V.
- Set the output to three times the pacing threshold to allow sufficient safety margin, or at least 3 V.

In those with no underlying rhythm or profound bradycardia, loss of capture will lead to asystole – in which case the output should be rapidly increased until capture returns.


2. Pacing sensitivity/sensing

Sensitivity, or sensing, refers to the amplitude of the sensed electrograms. Large electrograms are easy to sense and small ones are not and undersensing may occur.

- Set the pacemaker rate at least 10 bpm slower than the intrinsic heart rate (not possible if extremely slow underlying rhythm or asystole).
- Set the pacing sensitivity at 1mV and the pacing output to the lowest to avoid pacing on the T wave.
- Confirm ventricular sensing (flashing light on the pacing box and no spikes should be seen).
- Increase the sensitivity number (>1 mV) until you see a pacing spike/failure of sensing. This represents the sensitivity threshold of the sensed electrograms.

Fig. 32.7 Active-fixation lead is connected to a reusable generator secured to the skin with a large occlusive dressing to maintain sterility (A). Chest radiography showing the position of the pacing lead. The active-fixation screw mechanism and the CoreValve are visible (B). (Reproduced with permission from Cuisset T, Quilici J. Subclavicular screwed wire transient pacing to increase safety of transcatheter aortic valve implantation with the CoreValve system. *J Cardiol Cases*. 2011;3(3):e168, Figures 1 and 2.)

Fig. 32.8 Temporary pacing systems. Medtronic, Inc. (i) Model 5388 (dual-chamber); (ii) model 5348 (single-chamber).

- Set the sensitivity to a half to a third of the sensitivity threshold, to allow continuous sensing of all intrinsic signals (e.g. if it senses at 8 mV, set it at 4 mV or less).
- Do not forget to increase the pacing output.

PACEMAKER PROGRAMMING

Multiple parameters can be programmed on temporary and permanent pacing systems. All pacing practitioners,

and this includes physicians who implant temporary systems, should be familiar with programming the mode, rate, pacing output and sensitivity of a pacing system. In addition, they should also be able to diagnose and troubleshoot basic pacing problems like undersensing and oversensing. If dual-chamber pacing systems are used, programming the AV delay should be performed to optimise cardiac output and cardiac function (using echocardiographic guidance). Programming permanent pacing systems is more complicated than for temporary systems and should be performed only by individuals qualified to do so.

TROUBLESHOOTING

The incidence of pacing system malfunction is difficult to determine due to inconsistent definitions and the lack of any comprehensive reporting mechanism or registry.³⁹ The malfunctions discussed here will be limited to those that are manifest on an electrocardiogram rhythm strip.

1. Pacing stimuli present with loss of capture

Loss of capture is the failure of the pacemaker stimulus to produce electrical activation of the heart and a subsequent cardiac contraction. The diagnosis of loss of capture is based upon the presence of a pacing stimulus, without a subsequent P wave or QRS complex (Fig. 32.9). The result can be asystole or bradycardia, depending on the patient's underlying rhythm.

Causes: increase in pacing threshold above programmed value; lead dislodgement or malposition;

pharmacological management of, 913

physiological variables in, 909

primary, 908

secondary, 908

treatment of, 905

types of blunt, 908, 909f

ventilation of, 912

Traumatic brain injury (TBI)

- in blast victims, 1197
- cerebral microdialysis in, 777, 778
- neuromonitoring in, 772
- brain tissue oxygen, 775
- PbtO₂ readings, 775–777
- paediatric, 1096

Traumatic events, 41

Traumatic phrenic nerve palsy, 929

Traumatic subarachnoid

- haemorrhage, 909

Trepostinil, 396

Tricuspid annular plane systolic excursion (TAPSE), 222, 381

Tricuspid regurgitation, 405, 1335

Tricyclic antidepressants, 805

- overdose, 1140
- poisoning, antidotes to, 1115f–1118t

Triggered activity, 304

Triiodothyronine, 136

Trimethoprim-sulfamethoxazole, 1293

Trimethoprim-sulphamethoxazole, 175

Troponin, of pulmonary embolism, 557

True shunt, 435

Tuberculomas, 173–174

Tuberculosis, 591–592, 599

- diagnosis, 174
- drug susceptibility tests, 174
- GeneXpert MTB/RIF Ultra assay test, 174
- nucleic acid amplification tests, 174
- drug resistant, 174
- extensively, 174
- multidrug resistant, 174
- epidemiology, 172
- guidelines for diagnosis, 172
- in HIV patients, 602
- manifestations of, 173
- with other clinical emergencies, 174
- pathogenesis, 172, 173
- pleural, 173
- pulmonary, 173
- risk factors for, 592t
- treatment, 174

Tuberculous meningitis, 173, 761, 768

Tularaemia, 1208

Tumour lysis syndrome, 986, 1294

Tumour necrosis factor alpha, 797

Tumours

- anthracycline cardiomyopathy, 984
- bleomycin-related lung injury, 982
- chemotherapy-induced toxicities, 983f
- chemotherapy in ICU, 987
- in children, 1043
- definition of, 982
- effect of critical care on cancer, 987
- 5-fluorouracil cardiotoxicity, 984
- ifosfamide neurotoxicity, 982
- immune checkpoint inhibitors and, 984
- immunotherapy, 984, 984f
- monoclonal antibodies and, 985
- oncological emergencies, 985
- cardiac tamponade, 985
- electrolyte disorders, 985
- malignant pleural effusions, 987
- spinal-cord compression, 985
- superior mediastinal syndrome, 986
- superior vena cava compression, 986
- oncological therapy for, 988
- outcomes of, 987
- quality of life and long-term outcomes, 988
- radiotherapy for, 985
- solid, for intensive care unit, implications of, 982
- treatments, 982

Twin study, 143

Type A Wolff–Parkinson–White syndrome, with positive R-waves, 327f

Type B Wolff–Parkinson–White syndrome, with negative QRS deflection, 327f

‘Typical’ Afl waves, 316–317

U

Ultrasonography

- for abdominal injury, 947
- in acute pancreatitis, 643–644

Ultrasound physics, 219

- comprehensive, 220, 221t
- point-of-care, 220, 221t

Unconscious patient

- clinical assessment of, 715
- initial management of, 723

Undergoing neoadjuvant chemoradiotherapy, and physical exercise, 859

Unfractionated heparin (UFH), 560, 561

Unifocal atrial tachycardia, 314f, 314, 315f

Unresponsive coma, determination of death and, 112

Unstable angina, 263

- clopidogrel in, 279
- history and examination findings, 266t
- management of, 283

Unstable patient, management of, abdominal injury, 948

Upper airway collapsibility, 968

Upper airway obstruction, 477, 478f

- causes of, 477–478
- in children, 1027
- aetiology of, 1029
- anaesthesia for, 1033
- anatomical and developmental considerations for, 1027
- care of secured airway in, 1033
- causes of, 1029b
- clinical presentation of, 1028
- congenital, 1032
- infections and, 1029
- needle cricothyroidotomy for, 1034
- pathophysiology of, 1028
- subglottic stenosis and, 1032
- tracheostomy for, 1034
- trauma and, 1031
- recognition of, 478

Upper gastrointestinal bleeding, 630.

See also Lower gastrointestinal bleeding

- angiography and
- angiogenesis, 633–634
- clinical presentation of, 631
- endoscopic haemostasis, 632–633
- endoscopic treatments, 632
- combinations, 633
- endoscopic clipping, 633
- endoscopic injection of adrenaline, 633
- repeat endoscopy, 633
- use of direct pressure and heat energy, 633

high-risk lesions, 632–633

pharmacological treatment, 632

prevention of rebleeding

- acid suppression therapy, 634
- eradication of *H. pylori*, 634–635
- reduction in NSAID
- gastrotoxicity, 634
- tranexamic acid, 634

risk assessment, 631

Blatchford Risk Score, 632, 632t

Rockall Score, 631t

- of serious adverse events, 631
- surgery, 634f, 634