

POCKET

NEPHROLOGY

SECOND EDITION

Wooin Ahn

Jai Radhakrishnan

 Wolters Kluwer

Pocket **NEPHROLOGY**

Second Edition

Edited by

WOOIN AHN

JAI RADHAKRISHNAN

Philadelphia • Baltimore • New York • London
Buenos Aires • Hong Kong • Sydney • Tokyo

Acquisitions Editor: James Sherman
Development Editor: Ariel S. Winter
Editorial Coordinator: Vinodhini Varadharajalu
Senior Production Specialist: Bridgett Dougherty
Manager, Graphic Arts & Design: Stephen Druding
Manufacturing Coordinator: Lisa Bowling
Prepress Vendor: Aptara, Inc.

Copyright © 2025 Wolters Kluwer.

Copyright © 2020 Wolters Kluwer. All rights reserved. This book is protected by copyright. No part of this book may be reproduced or transmitted in any form or by any means, including as photocopies or scanned in or other electronic copies, or utilized by any information storage and retrieval system without written permission from the copyright owner, except for brief quotations embodied in critical articles and reviews. Materials appearing in this book prepared by individuals as part of their official duties as U.S. government employees are not covered by the above-mentioned copyright. To request permission, please contact Wolters Kluwer at Two Commerce Square, 2001 Market Street, Philadelphia, PA 19103, via email at permissions@lww.com, or via our website at shop.lww.com (products and services).

9 8 7 6 5 4 3 2 1

Printed in Mexico

978-1-9752-1493-7

Library of Congress Cataloging-in-Publication Data available upon request.

This work is provided "as is," and the publisher disclaims any and all warranties, express or implied, including any warranties as to accuracy, comprehensiveness, or currency of the content of this work.

This work is no substitute for individual patient assessment based upon healthcare professionals' examination of each patient and consideration of, among other things, age, weight, gender, current or prior medical conditions, medication history, laboratory data and other factors unique to the patient. The publisher does not provide medical advice or guidance and this work is merely a reference tool. Healthcare professionals, and not the publisher, are solely responsible for the use of this work including all medical judgments and for any resulting diagnosis and treatments.

Given continuous, rapid advances in medical science and health information, independent professional verification of medical diagnoses, indications, appropriate pharmaceutical selections and dosages, and treatment options should be made and healthcare professionals should consult a variety of sources. When prescribing medication, healthcare professionals are advised to consult the product information sheet (the manufacturer's package insert) accompanying each drug to verify, among other things, conditions of use, warnings and side effects and identify any changes in dosage schedule or contraindications, particularly if the medication to be administered is new, infrequently used or has a narrow therapeutic range. To the maximum extent permitted under applicable law, no responsibility is assumed by the publisher for any injury and/or damage to persons or property, as a matter of products liability, negligence law or otherwise, or from any reference to or use by any person of this work.

shop.lww.com

CONTENTS

Contributing Authors

Preface

CLINICAL MANIFESTATIONS

Woojin Ahn, Rupali S. Avasare, Sami Droubi, Jai Radhakrishnan

Proteinuria

Hematuria

Urine Output Changes

Other Symptoms

Edema

Fluid Imbalance

Hypotension & Shock

Nephrotic Syndrome (NS)

Glomerulonephritis (GN)

Thrombotic Microangiopathy (TMA)

Acute Kidney Injury (AKI)

Chronic Kidney Disease (CKD)

Kidney Cyst, Mass and Hemorrhage

DIAGNOSIS

Woojin Ahn, Satoru Kudose, Andrew A. Moses, Dominick Santoriello

Kidney Function

Urine Studies

Radiology

Kidney Biopsy

Kidney Pathology

TREATMENTS AND TOXINS

Mariana Chang, Hector Alvarado Verduzco

Nutrition

Fluid Therapy

Pharmacology

RAAS, Neprilysin and Endothelin Inhibitors

SGLT2 Inhibitors (SGLT2i)

Antidiuretic Hormone

Nonsteroidal Anti-Inflammatory Drugs

Diuretics

Immunosuppression

Prophylaxis

Illicit, Herbal and Environmental Toxins

Plasma Exchange

Intoxication and Poisoning

GENETICS

Hee-deok Han, Krzysztof Kiryluk, Jordan Gabriela Nestor

Genetic Diagnoses

Hereditary Glomerular Diseases

Hereditary Tubulointerstitial Diseases

ACID BASE BALANCE AND ELECTROLYTES

Farid Arman, Qais Al-Awqati, Benjamin Wooden

Renal Tubules

Evaluation of Acid-Base Balance

Metabolic Acidosis

Metabolic Alkalosis

Respiratory Acidosis and Alkalosis

Potassium

Sodium and Water

Calcium

Phosphate

Magnesium

TUBULOINTERSTITIAL DISEASES

Josh Earl, Jacob Stevens

[Acute Tubular Necrosis](#)

[Pigment Nephropathy](#)

[Crystal Nephropathy](#)

[Urinary Stone Disease](#)

[Interstitial Disease](#)

[Immunoglobulin G4-Related Disease](#)

GLOMERULAR AND VASCULAR DISEASES

Syeda Behjat Ahmad, Pietro Canetta, Yonatan Peleg

[Minimal Change Disease \(Mcd\)](#)

[Focal Segmental Glomerulosclerosis](#)

[Apolipoprotein L1 Nephropathy](#)

[Membranous Nephropathy](#)

[Pauci-Immune Glomerulonephritis](#)

[Anti-Gbm Disease](#)

[Immunoglobulin A Nephropathy \(IgAN\)](#)

[Immune Complex-mediated MPGN](#)

[Cryoglobulinemia](#)

[C3 Glomerulopathy](#)

[Complement-Mediated Tma \(Cm-Tma\)](#)

[Hus and Ttp](#)

[Antiphospholipid Syndrome \(Aps\)](#)

[Amyloidosis](#)

[Nonamyloid Deposition Diseases](#)

[Renal Vascular Diseases](#)

UROLOGY

Hilda Elena Fernandez

[Urinary Tract Obstruction \(UTO\)](#)

[Reflux Nephropathy](#)

[Urinary Tract Infection \(UTI\)](#)

[Renal Cell Carcinoma \(RCC\)](#)

HYPERTENSION

Andrew S. Bomback, Yelena Drexler

[General Hypertension](#)

[Hypertension in Dialysis](#)

[Resistant Hypertension](#)

[Hypertensive Emergencies](#)

[Antihypertensives](#)

[Obstructive Sleep Apnea \(Osa\)](#)

[Renal Artery Stenosis \(Ras\)](#)

[Primary Aldosteronism \(PA\)](#)

[Pheochromocytoma](#)

[Hypertension after Kidney Transplantation](#)

CARDIOLOGY-PULMONOLOGY

Woojin Ahn, Geoffrey K. Dube

[Cardiology](#)

[Pulmonology](#)

[Mechanical Circulatory Support](#)

GASTROENTEROLOGY-HEPATOLOGY

Anushya Jeyabalan, Heedeok Han, Shayan Shirazian, Meghan E. Sise

[Gastroenterology](#)

[Hepatology](#)

[Hepatitis B Virus \(Hbv\)](#)

[Hepatitis C Virus \(Hcv\)](#)

HEMATOLOGY-ONCOLOGY

Abdallah S. Geara

[Hematology](#)

[Anticoagulation](#)

[Monoclonal Gammopathy \(Mg\)](#)

[Hematopoietic Cell Transplantation \(Hct\)](#)

[Oncology](#)

Anticancer Therapy
Malignancy After Kidney Transplantation

INFECTIOUS DISEASES

S. Ali Husain, Anushya Jeyabalan, Meghan E. Sise
Infection and Sepsis
Antimicrobial Therapy
Human Immunodeficiency Virus
COVID-19
Infection-Related Glomerulonephritis
Infection After Kidney Transplantation

MINERAL BONE DISORDER

Totini Sagorika Chatterjee, Pascale Khairallah
Ckd-Mineral and Bone Disorder
Osteoporosis
Vitamin D Deficiency
Primary Hyperparathyroidism

ENDOCRINOLOGY

Woojin Ahn, Anna Krieger
Diabetes Mellitus (DM)
Hyperlipidemia
Obesity
Adrenal Glands

RHEUMATOLOGY

Gerald B. Appel, Mariela Navarro-Torres
Systemic Lupus Erythematosus
Autoimmune Disease and Vasculitis
Uric Acid

PAIN MEDICINE, NEUROLOGY AND PSYCHIATRY

Minesh Khatri
Pain
Psychiatry, Neurology and Sleep

GERIATRICS-PALLIATIVE CARE

Woojin Ahn, Maya K. Rao
Geriatrics
Palliative Care

OTHER SPECIALTIES

Pedro Mogrovejo, Teena Zachariah
Surgery
Obstetrics
Dermatology
Ophthalmology

KIDNEY REPLACEMENT THERAPY

Sumit Mohan, Soumya Rajendren, Anthony M. Valeri
Krt General Concepts
Krt Indication And Timing
Krt Modality Decision
Continuous Kidney Replacement Therapy

HEMODIALYSIS

Sean D. Kalloo, Sindhuri Prakash-Polet
Hd Prescription
Hd Adequacy
Hd Water Treatment
Hd Complication
Hd Vascular Access

PERITONEAL DIALYSIS

Heedeok Han, Shayan Shirazian
Pd Concepts
Pd Prescription
Pd Adequacy

Pd Complication

Pd Catheter

TRANSPLANTATION

Woojin Ahn, Jae Hyung Chang, Russell J. Crew, Geoffrey K. Dube, S. Ali Husain, Sumit Mohan

Recipient Evaluation

Living Donor Evaluation

Immunologic Testing and Monitoring

Kidney Allocation

Allograft Dysfunction

Acute Cellular Rejection

Antibody-Mediated Rejection

Other Organ Transplantation

APPENDIX

Transporters in Kidney Tubules

Units and Molecular Weights

Abbreviations

INDEX

PHOTO INSERTS

Andrew A. Moses, Dominick Santoriello

Urine Sediment Images

Renal Pathology Images

Radiology Images

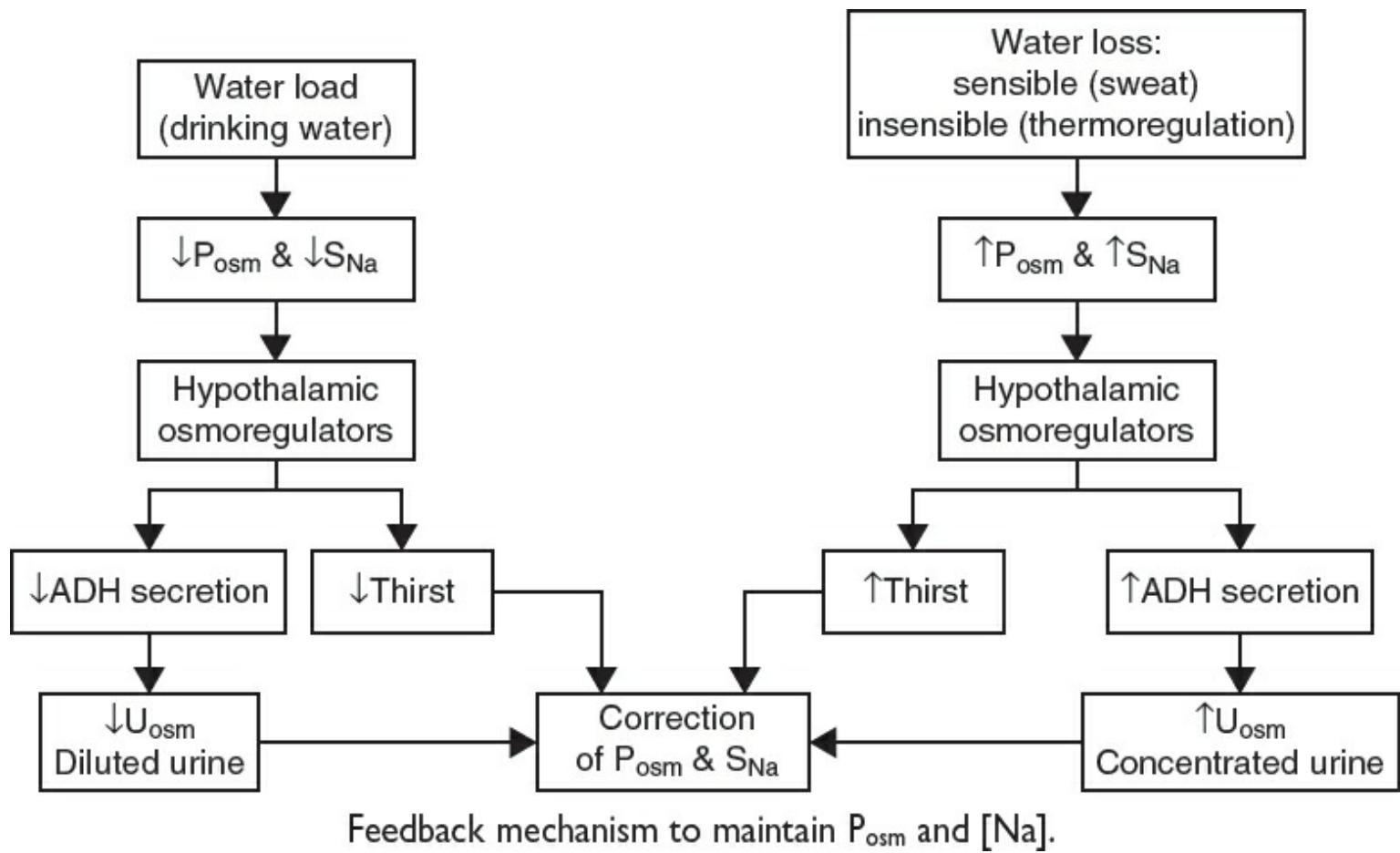
Properties of Vasopressors and Inotropes				
Dose	Mechanisms	Afterload (SVR)	Inotropy (CO)	Chronotropy (HR)
Dopamine (mcg/kg/min)				
1–3	DA >> β_1	↑ or ↓	+	+
3–10	$\beta_1 > \beta_2$, DA > α_1	↑	++	++
>10	$\alpha_1 > \beta_1 >> \beta_2$	↑↑	+++	++
Low dose does not prevent ATN; can lead to HoTN and tachycardia (KI 2006;69:1669)				
Epinephrine (mcg/min)				
1–20	$\alpha_1, \alpha_2, \beta_1 > \beta_2$	↑↑↑	++++	++++
Low dose may ↓ SVR; A first-line agent in anaphylactic shock				
Norepinephrine (mcg/min)				
1–40	$\alpha_1, \alpha_2 >> \beta_1$	↑↑↑↑	++	+
Preferred as the first-line agent over other vasopressors in septic shock; Vasopressin then epinephrine can be added to norepinephrine to meet MAP target				
Phenylephrine (mcg/min)				
10–400	$\alpha_1 >> \alpha_2$	↑↑↑↑	-	-
May be considered when tachyarrhythmias preclude use of norepinephrine				
Vasopressin (U/min)				
0.04–0.06	V1/V2	↑↑	-	-
Vasopressin vs Norepinephrine: in septic shock no difference in kidney failure-free days or death, but vasopressin group had less use of KRT (VANISH JAMA 2016;316:509)				
Dobutamine (mcg/kg/min)				

- Vasopressors generally improve GFR (J Physiol 1981;321:21; CJASN 2008;3:546)
- Angiotensin II (Giapreza[®]): in vasodilatory shock, ↑ MAP (NEJM 2017;377:419); in AKI requiring KRT, ↓ 28-d mortality and ↑ KRT liberation (Crit Care Med 2018;46:949)
- Methylene blue: early initiation reduces time to vasopressor discontinuation and increases vasopressor-free days (Crit Care 2023;27:110)
- High-dose hydroxycobalamin: used in refractory shock; can cause false blood leak alarm in certain HD machine (CKJ 2017;10:357)
- Inotropes are added in pts with septic shock and cardiac dysfunction with persistent hypoperfusion despite adequate volume status and arterial blood pressure,

KIDNEY REPLACEMENT THERAPY IN SHOCK

CKRT

- More likely to ↓ fluid accumulation than HD (KI 2009;76:422)
- Timing of KRT (early initiation vs standard of care): No differences in outcome: (NEJM 2016;375:122; STARRT-AKI NEJM 2020;383:240; IDEAL-ICU NEJM 2018;379:1431)
- Early KRT initiation did not ↓ mortality, no differences in KRT dependence or serum Cr on discharge or in ventilator or vasopressor use (Lancet 2020;395:1506)


ORTHOSTATIC HYPOTENSION (OH)

- Physiologic response to standing: the pooling of 500–1,000 mL of blood in the lower extremities and splanchnic circulation → ↓ venous return to the heart and ↓ cardiac output and BP → ↑ sympathetic outflow (baroreceptor reflex) → ↑ peripheral vascular resistance, venous return, cardiac output, and BP
- OH: postural reduction in SBP ≥ 20 or DBP ≥ 10 w/i 3 min of standing
- BP fall w/i 1 min was a/w dizziness, fracture, syncope, and death (JAMA IM 2017;177:1316)
- Delayed OH: OH after 3 min of standing; a/w Parkinson ds (Neurology 2015;85:1362)
- Postural tachycardia synd (POTS): ↑ HR ≥ 30 beats/min w/i 10 min of standing or head-up tilt in the absence of OH

Causes

- Volume depletion: fluid loss, overdiuresis, overdialysis; adrenal insufficiency, anemia
- Autonomic dysfunction: amyloidosis, DM, Parkinson ds, multiple system atrophy

- Urine sodium (U_{Na}): often correlates w/ volume status (hypovolemia $\downarrow U_{Na}$)
- Dehydration (water loss) $\uparrow [Na] \neq$ volume depletion (sodium and water loss)
- P_{osm} (and P_{Na}) is regulated by ADH secretion and thirst

- Free water clearance is determined by ADH activity and solute excretion (JASN 2008;19:1076).

$$\text{Free water clearance} = \frac{\text{Solute Excretion}}{U_{osm}} \left(1 - \frac{U_{osm}}{P_{osm}} \right)$$

$$\text{Electrolyte free water clearance} = \frac{\text{Solute Excretion}}{U_{osm}} \left(1 - \frac{U_{Na} + U_K}{P_{Na}} \right)$$

HYPONATREMIA

Background

- Definition: serum sodium concentration <135
- Usually due to \downarrow water excretion and rarely solely from \uparrow free water intake

Clinical Manifestations

- Water movement into the brain acutely leads to brain edema
- Cerebral edema is related to the degree and the rapidity of hyponatremia
- Symptoms in acute hyponatremia can be nonspecific—malaise, nausea, progressing to headache, lethargy, gait imbalance, and in extreme cases seizures and coma
- Chronic hyponatremia <130 is associated with subtle neurologic symptoms such as general malaise, decreased attention span, and gait instability/falls
- Severe acute hyponatremia can lead to brain herniation in premenopausal women and young children

Acute Hyponatremia

- Caused by high free water intake with additional pathogenesis: postop, exercise, ecstasy, haloperidol, thiazide, desmopressin, oxytocin, nonconductive irrigation solutions, IV CYC

- acute fatty liver of, 19-4
- AKI in, 19-4
- and breastfeeding, medications in, 19-2
- chronic hypertension in, 19-3
- CKD and, 19-5
- complement-mediated TMA (atypical HUS) and, 19-4
- ESKD and, 19-5–19-6
- gestational hypertension in, 19-3
- glomerular diseases and, 19-4
- hypertensive disorders of, 19-2–19-3
- kidney and, 19-2
- kidney biopsy during, 19-4
- kidney transplantation recipients and, 19-6
- NS during, 19-4
- Sjögren syndrome and, 19-5
- and SLE, 19-5
- Pretransplant immunologic evaluation, 23-5–23-6
- Primary aldosteronism (PA), 9-13–9-15
- Primary hyperoxaluria (PH), 6-4
- Primary hyperparathyroidism (1° HPT), 6-5, 14-5–14-7
- Progressive multifocal leukoencephalopathy, 3-29–3-30
- Proliferative GN w/ monotypic Ig deposits, 12-9
- Prophylaxis, 3-12
- Propylene glycol, 3-41
- Prostatitis, 1-10
- Protease inhibitors, 13-7
- Protein, 3-2
 - energy wasting, 3-2
 - molecular weight, A2-2
 - in urine, 2-2–2-3
- Proteinase 3 (PR3) disease, 7-8
- Protein catabolic rate (PCR), 3-2
- Proteinuria, 1-1–1-3, 1-21
 - after kidney transplantation, 1-3
- Proton pump inhibitors (PPIs), 11-2
- Proximal convoluted tubule (PCT), 3-15–3-16
- Proximal renal tubular acidosis (pRTA, type 2 RTA), 5-10–5-11
 - carbonic anhydrase (CA) inhibitors, 5-11
 - causes of, 5-10
 - diagnosis, 5-10
 - isolated, 5-10
 - pathogenesis, 5-10
 - treatment, 5-10
- Proximal tubular damage, 1-2
- Proximal tubule drug transporters, 3-8–3-9
- Proximal tubule (PT), 5-2
 - cystinosis, 5-2
 - functions of, 5-2
- Proximal tubulopathy, 13-7
- Pseudohyperkalemia, 5-15
- Pseudohypoaldosteronism type 1, 5-3, 5-9
- Pseudohypoaldosteronism type 2 (Gordon syndrome), 5-3, 5-9
- Pseudohyponatremia, 11-6
- Pseudoresistant HTN, 9-6
- Pseudotumor, 2-9
- Psychiatric disease, recipient evaluation for, 23-2
- Psychosis in CKD, 17-4
- Pulmonary disease, recipient evaluation for, 23-2
- Pulmonary hypertension (PH), 10-7, 21-17
- Pulse pressure variation (PPV), 1-16
- Pyelography, 2-10
- Pyelonephritis, 2-3

R

- Radiation nephropathy, 12-15
- Radiology, 2-8–2-12
- Radionuclide renal scan, 2-10
- Radiotracers, 2-10
- Raloxifene, 14-3
- Random albumin to creatinine ratio (UACR), 1-1–1-2
- Random protein to creatinine ratio (UPCR), 1-1–1-2