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Preface 

Biomechanics is a field of science that helps to gain insight into the mechanics 
of living systems. This interdisciplinary subject helps to understand the relation-
ship between the structure and function of human joints, predict changes in the 
bone tissue due to alterations in the mechanical and biochemical environment, and 
propose methods of artificial interventions. The fundamental concepts of biome-
chanics encompass joint kinematics and kinetics, gait analysis and motion capture, 
tissue mechanics, implant design and analysis, bone remodelling, and bone frac-
ture healing, as well as state-of-the-art techniques of modelling and simulation of 
biomechanical systems. 

This book is derived from materials and lecture notes developed for the course 
“Mechanics of the Human Body”, taught at the Indian Institute of Technology 
Kharagpur. It has been further enriched by the NPTEL online course Biomechanics 
of Joints and Orthopaedic Implants. Although primarily aimed at undergraduate and 
postgraduate engineering students, the course has also attracted medical practitioners 
with a keen interest in biomedical engineering. This book aims to be a valuable 
resource for students in biomedical and biomechanical engineering, highlighting 
recent advancements in the biomechanics of joints and orthopaedic implants. 

The authors wish that the book accomplishes five goals. The first goal is to intro-
duce the anatomy, physiology, and movements of the human body and its mechanical 
analogy to the students in order to evoke interest in the relationship between the struc-
ture and functions of the musculoskeletal system, in particular the main joints of the 
upper and lower limbs, as well as the spine. The second goal is to gain an insight 
into the structure, functions, movements, and forces acting on the joints during daily 
activities. The biomechanical concepts of the specific joints, the hip, knee, shoulder, 
elbow, and spine using the concept of static equilibrium have been presented. 

The third goal is to quantitatively analyse the human gait cycle as a complex 
biomechanical system. Herein, focus on the details of gait analysis, measurement 
techniques, gait abnormalities, and motion capture system. Moreover, insights into 
the applications of mechanics of rigid bodies in the field of biomechanics have 
been provided. The estimation of musculoskeletal forces (joint forces and moments, 
muscle forces) using the fundamental concepts of joint dynamics (kinematics and
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kinetics) has been presented with relevant solved examples and exercises to impart 
basic understanding. The quantitative study of the skeletal system is envisaged to 
provide a comprehensive understanding of the applications of rigid body dynamics. 

The fourth goal is to revisit the basic concepts of mechanics of deformable bodies 
relevant to bone tissue as well as implanted bone structure. The efficacies of joint 
replacement (hip, knee, shoulder) and spinal surgery have been explored in detail. The 
concepts of composite beams in the bone-implant structure have been presented to 
enhance the understanding of stress/strain shielding. Common failure mechanisms 
of implanted bone structures and biomaterials used in orthopaedic implants have 
been discussed. Moreover, state-of-the-art modelling techniques of biomechanical 
systems and experimental validation have been presented. The students/instructors 
are expected to be benefitted from the extensive discussions on state-of-the-art finite 
element modelling techniques using CT/MRI scan data. 

The fifth goal is to gain insight into the theory and concepts of bone remod-
elling and fracture healing. The theory, mathematical formulations, and computa-
tional framework of bone adaptation have been explored. Different mathematical 
models of tissue differentiation algorithms, such as mechanoregulatory, bioregula-
tory, and mechanobioregulatory algorithms have been presented. A brief overview 
of artificial intelligence and its application in orthopaedic biomechanics research has 
been discussed. 

The contributions of several people have culminated in the development of this 
manuscript. We sincerely thank Dr. Rahul Gautam Talukdar for his feedback on spine-
related content, Dr. Nirmal Kumar Som for his insights into human anatomy, and 
Mr. Gowtham Reddy for his review on artificial intelligence content. We also thank 
Mr. Pedada Jagdish for reviewing the manuscript, Mr. Rounak Bhattacharya for his 
feedback on motion analysis, Mr. Saranjit Sarkar and Ms. Rupa Mukherjee for their 
contributions to figures and artworks. Lastly, we express our heartfelt gratitude to 
our families and friends for their unwavering support and encouragement throughout 
this project. 

We welcome corrections and suggestions for improving this textbook, by email 
to sangupta@mech.iitkgp.ac.in. 

Kharagpur, India 
September 2024 

Sanjay Gupta 
Ceby Mullakkara Saviour 

Bidyut Pal 
Souptick Chanda 

Kaushik Mukherjee
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Chapter 1 
Musculoskeletal System: Structure 
and Function 

In this chapter, our focus will be directed towards the fundamental aspects of the 
human musculoskeletal system. A detailed understanding of the musculoskeletal 
system, particularly the intricate relationship between the structure and its function, 
is necessary prior to discussions on the biomechanics of the human body. Muscu-
loskeletal elements, e.g. bone, muscle, ligament, and tendon, are discussed in the 
following articles. 

1.1 Skeletal System 

The skeletal system is a basic framework of bones and connective tissues that provides 
the human body with essential structure, support, and protection. Additionally, this 
intricate network of bones and joints allows us to perform a range of movements and 
activities essential for daily living. The skeletal system is classified into the appen-
dicular skeleton and the axial skeleton, as presented in Fig. 1.1. The group of bones 
or the skeleton marked in yellow corresponds to the axial skeleton, encompassing the 
skull, thoracic cage (rib cage), and vertebral column (Fig. 1.1a). The skeletal segment 
marked in blue colour is knowns as the appendicular skeleton, which includes the 
upper limbs, lower limbs, shoulder girdle, and pelvic girdle (Fig. 1.1b).

In order to accurately describe the position and orientation of the anatomical struc-
tures in space, it is necessary to define anatomical reference planes and anatomical 
directions. In Fig. 1.2, three mutually perpendicular planes, i.e. the coronal plane, 
the sagittal plane, and the axial plane, are presented. These planes are referred to 
as anatomical planes of reference, and they are essential for precisely determining 
the position of structures in space. The sagittal plane is a vertical plane that passes 
through the body longitudinally, dividing the body into a left section and a right 
section. The coronal plane is another vertical plane, perpendicular to the sagittal 
plane, that divides the body into a front section and a back section. The transverse
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Fig. 1.1 The skeletal system; a axial skeleton, b appendicular skeleton

plane, also known as the axial plane, is an anatomical plane perpendicular to the 
above two planes that divides the body into top and bottom sections. Additionally, 
anatomical directions describe the position of a structure relative to another structure. 
Specific directions have been designated, including superior, inferior, anterior, poste-
rior, proximal, distal, medial, and lateral, as illustrated in Fig. 1.3. For instance, the 
anterior and posterior directions are employed to describe structures located toward 
the front (anterior side) or toward the back (posterior side) of the body. An example 
is the toe being described as anterior to the heel. Part ‘A’ is said to be superior to 
part ‘B’, if part ‘A’ lies above part ‘B’. Whereas, if part ‘A’ lies below the reference 
part ‘B’, we can say that part ‘A’ is inferior to part ‘B’. For example, the pelvis is 
inferior to the abdomen. In addition to superior and inferior, anatomical terms such 
as proximal and distal are commonly used to denote relative positions. As the name 
suggests, while distal refers to a position far or at a certain distance, proximal indi-
cates proximity. In precise terms, proximal indicates a position closer to the trunk 
or the point of attachment or origin of a structure, while distal refers to a location 
further away from it. For example, the foot is distal to the knee joint, whereas the 
knee is proximal to the foot. The knee joint is located closer to the trunk, while the 
foot is located farther away from it, making it distal to the knee joint. The femoral 
head is proximally located in the femur, whereas the femoral condyles are distally 
located.



5.5 Cancellous Bone 243

Fig. 5.22 Scanning electron 
micrographs of cancellous 
bone structure: 1. Low  
density cancellous bone with 
an asymmetric rod-like 
structure; specimen taken 
from femoral head 2. High  
density cancellous bone with 
an asymmetric plate-like 
structure; specimen taken 
from femoral head 3. 
Plate-like cancellous bone 
with columnar structure; 
specimen taken from femoral 
condyle (Adapted from 
Gibson L. J. 1985)
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Solution to Practice Problems 

Solutions to Practice Problems of Chap. 2 

Problem 2.1 

Given data: 
Reaction force, R = 80 kg (subject standing on one foot) 
The weight of limb (WL) = 13 kg 

Unknown data: 
Hip joint reaction force (FJ) acting at an angle θ with the horizontal. 
Considering the force equilibrium along x- and y-directions (Fig. S2.1),

∑
FX = 0 

FA cos 70 = FJ cos θ 
(S2.1)

∑
FY = 0 

FA sin 70 + R = WL + FJ sin θ 
FA sin 70 + 80 = 13 + FJ sin θ 
FA sin 70 + 67 = FJ sin θ 

(S2.2)

Taking a moment about centre of pressure,

∑
M = 0 

0.082 × FA sin 70 + 0.890 × FA cos 70 − 0.008 × WL 

−0.014 × FJ sin θ − 0.9 × FJ cos θ = 0 

(S2.3) 

Substituting Eqs. (S2.1) and (S2.2) in Eq.  (S2.3)
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